ON THE SUPER EDGE-MAGIC DEFICIENCY AND α-VALUATIONS OF GRAPHS

Rikio Ichishima1 and Akito Oshima2

1College of Humanities and Sciences, Nihon University, 3-25-40
Sakurajousui Setagaya-ku, Tokyo 156-8550, Japan,
ichishim@chs.nihon-u.ac.jp

2Department of Mathematical Information Science, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka Shinjuku-ku, Tokyo 162-8601, Japan,
akito_o@rs.kagu.tus.ac.jp

Abstract. A graph G is called super edge-magic if there exists a bijective function $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\}$ such that $f(u) + f(v) + f(uv)$ is a constant for each $uv \in E(G)$ and $f(V(G)) = \{1, 2, \ldots, |V(G)|\}$. The super edge-magic deficiency, $\mu_s(G)$, of a graph G is defined as the smallest nonnegative integer n with the property that the graph $G \cup nK_1$ is super edge-magic or $+\infty$ if there exists no such integer n. In this paper, we prove that if G is a graph without isolated vertices that has an α-valuation, then $\mu_s(G) \leq |E(G)| - |V(G)| + 1$. This leads to $\mu_s(G) = |E(G)| - |V(G)| + 1$ if G has the additional property that G is not sequential. Also, we provide necessary and sufficient conditions for the disjoint union of isomorphic complete bipartite graphs to have an α-valuation. Moreover, we present several results on the super edge-magic deficiency of the same class of graphs. Based on these, we propose some open problems and a new conjecture.

Key words: Super edge-magic labeling, super edge-magic deficiency, sequential labeling, sequential number, α-valuation.
Abstrak. Suatu graf G disebut sisi-ajaib super jika terdapat sebuah fungsi bijektif $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\}$ sedemikian sehingga $f(u) + f(v) + f(uv)$ adalah sebuah konstanta untuk tiap $uv \in E(G)$ dan $f(V(G)) = \{1, 2, \ldots, |V(G)|\}$. Defisiensi sisi-ajaib super, $\mu_s(G)$, dari sebuah graf G didefinisikan sebagai bilangan bulat non negatif terkecil n dengan sifat yaitu graf $G \cup nK_1$ adalah sisi-ajaib super atau $+\infty$ jika tidak terdapat bilangan bulat n yang demikian.

Pada paper ini, kami membuktikan bahwa jika G adalah sebuah graf tanpa titik terisolasi yang mempunyai sebuah nilai-α, maka $\mu_s(G) \leq |E(G)| - |V(G)| + 1$. Hal ini menghasilkan $\mu_s(G) = |E(G)| - |V(G)| + 1$ jika G mempunyai sifat tambahan yaitu G adalah tidak berurutan. Kami juga memberikan syarat perlu dan cukup untuk gabungan disjoin dari graf bipartit lengkap isomorfik untuk mempunyai sebuah nilai-α. Lebih jauh, kami menunjukkan beberapa hasil pada defisiensi sisi-ajaib dari kelas graf yang sama. Berdasarkan hal-hal tersebut, kami mengusulkan beberapa masalah terbuka dan sebuah konjektur baru.

Kata kunci: Pelabelan sisi-ajaib super, defisiensi sisi-ajaib super, pelabelan secara berurutan, bilangan secara berurutan, nilai-α.

1. Introduction

The notation and terminology of this paper will generally follow closely that of [4]. All graphs considered here are finite, simple and undirected. The vertex set of a graph G is denoted by $V(G)$, while the edge set is denoted by $E(G)$. A complete bipartite graph with partite sets X and Y, where $|X| = s$ and $|Y| = t$, is denoted by $K_{s,t}$. For any graph G, the graph mG denotes the disjoint union of m copies of G. For two integers a and b with $b \geq a$, the set $\{x \in \mathbb{Z} | a \leq x \leq b\}$ will be denoted by simply writing $[a,b]$, where \mathbb{Z} denotes the set of all integers.

The first paper in edge-magic labelings was published in 1970 by Kotzig and Rosa [20], who called these labelings: magic valuations; these were later rediscovered by Ringel and Lladó [22], who coined one of the now popular terms for them: edge-magic labelings. More recently, they have also been referred to as edge-magic total labelings by Wallis [24]. For a graph G of order p and size q, a bijective function $f : V(G) \cup E(G) \rightarrow [1, p + q]$ is called an edge-magic labeling of G if $f(u) + f(v) + f(uv)$ is a constant k (called the valence of f) for each $uv \in E(G)$. If such a labeling exists, then G is called an edge-magic graph. In 1998, Enomoto et al. [5] defined an edge-magic labeling f of a graph G to be a super edge-magic labeling if f has the additional property that $f(V(G)) = [1,p]$. Thus, a graph possessing a super edge-magic labeling is a super edge-magic graph. Lately, super edge-magic labelings and super edge-magic graphs are called by Wallis [24] strong edge-magic total labelings and strongly edge-magic graphs, respectively.

The following lemma taken from [6] provides necessary and sufficient conditions for a graph to be super edge-magic.
Lemma 1.1. A graph G of order p and size q is super edge-magic if and only if there exists a bijective function $f : V(G) \rightarrow [1, p]$ such that the set

$$S = \{ f(u) + f(v) \mid uv \in E(G) \}$$

consists of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with valence $k = p + q + s$, where $s = \min(S)$ and

$$S = [k - (p + q), k - (p + 1)].$$

For every graph G, Kotzig and Rosa [20] proved that there exists an edge-magic graph H such that $H \cong G \cup nK_1$ for some nonnegative integer n. This motivated them to define the edge-magic deficiency of a graph. The edge-magic deficiency, $\mu(G)$, of a graph G is the smallest nonnegative integer n for which the graph $G \cup nK_1$ is edge-magic. Motivated by the concept of edge-magic deficiency, Figueroa-Centeno et al. [10] analogously defined the super edge-magic deficiency of a graph. The super edge-magic deficiency, $\mu_s(G)$, of a graph G is either the smallest nonnegative integer n with the property that the graph $G \cup nK_1$ is super edge-magic or $+\infty$ if there exists no such integer n. Thus, the super edge-magic deficiency of a graph G is a measure of how close G is to being super edge-magic.

An alternative term exists for the super edge-magic deficiency, namely, the vertex dependent characteristic. This term was coined by Hedge and Shetty [16]. In [16], they gave a construction of polygons having same angles and distinct sides using the result on the super edge-magic deficiency of cycles provided in [10].

In 1967, Rosa [23] initiated the study of β-valuations. They were later studied by Golomb [14], who called them graceful labelings, which is the term used in the current literature of graph labelings. A graph G of size q is called graceful if there exists an injective function $f : V(G) \rightarrow [0, q]$ such that each $uv \in E(G)$ is labeled $|f(u) - f(v)|$ and the resulting edge labels are distinct. Such a function is called a graceful labeling. In [23], Rosa also introduced the notion of α-valuations stemming from his interest in graph decompositions. A graceful labeling f is called an α-valuation if there exists an integer λ (called the critical value of f) so that $\min\{f(u), f(v)\} \leq \lambda < \max\{f(u), f(v)\}$ for each $uv \in E(G)$. Moreover, he pointed out that a graph that admits an α-valuation f is necessarily bipartite and has the partite sets $\{v \in V(G) \mid f(v) \leq \lambda\}$ and $\{v \in V(G) \mid f(v) > \lambda\}$.

The notion of sequential graphs was introduced by Grace [15]. He defined a graph G of size q to be sequential if there exists an injective function $f : V(G) \rightarrow [0, q - 1]$ (with the label q allowed if G is a tree) such that each $uv \in E(G)$ is labeled $f(u) + f(v)$ and the resulting set of edge labels is $[m, m + q - 1]$ for some positive integer m. Such a function is called a sequential labeling.

We now consider a concept that is somehow related to the super edge-magic deficiency of graphs without isolated vertices as well as α-valuations and sequential labelings. The notion of the sequential number was recently introduced by Figueroa-Centeno and Ichishima [11]. The sequential number, $\sigma(G)$, of a graph G of size q without isolated vertices is defined to be either the smallest positive integer n for which it is possible to label the vertices of G with distinct elements from the set $[0, n]$ in such a way that each $uv \in E(G)$ is labeled $f(u) + f(v)$ and
the resulting edge labels are q consecutive integers or $+\infty$ if there exists no such integer n. Thus, the sequential number of a graph G is a measure of how close G is to being sequential.

Figueroa-Centeno and Ichishima [11] found the following formula for the sequential number of a graph without isolated vertices in terms of its super edge-magic deficiency and order. As a consequence of this theorem, they also determined the exact value of the super edge-magic deficiency of the complete bipartite graph, which is stated in the succeeding corollary. These will later serve as the bases for some remarks and a new conjecture.

Theorem 1.2. If G is a graph of order p without isolated vertices, then
\[\sigma(G) = \mu_s(G) + p - 1. \]

Due to Theorem 1.2, the sequential number plays an important role in the study of super edge-magic deficiency of a graph without isolated vertices.

Corollary 1.3. For all integers s and t with $s \geq 2$ and $t \geq 2$,
\[\mu_s(K_{s,t}) = (s - 1)(t - 1). \]

In this paper, we prove that if G is a graph of order p and size q without isolated vertices that has an α-valuation, then $\mu_s(G) \leq q - p + 1$. Additionally, if G is not sequential, then $\mu_s(G) = q - p + 1$. Also, we provide necessary and sufficient conditions for the disjoint union of isomorphic complete bipartite graphs to have an α-valuation. Moreover, we present several results on the super edge-magic deficiency of the same class of graphs. These lead to some open problems and a new conjecture.

The survey by Gallian [12] on graph labeling problems is an excellent source of additional information. More information on super edge-magic graphs and related subjects can be found in the books by Bača and Miller [2], and Wallis [24].

2. Main Results

Our goal of this section is to establish a general formula for the super edge-magic deficiency of graphs without isolated vertices that have α-valuations, but not sequential. To achieve this, we start with the following result.

Theorem 2.1. If G is a graph of order p and size q without isolated vertices that has an α-valuation, then
\[\mu_s(G) \leq q - p + 1. \]

Proof. First, assume that G is a graph of size q without isolated vertices that has an α-valuation f with critical value λ. Then G is bipartite and has the partite sets
\[X = \{ x \in V(G) \mid f(x) \leq \lambda \} \quad \text{and} \quad Y = \{ y \in V(G) \mid f(y) > \lambda \}. \]

Next, define the vertex labeling $g : V(G) \to [0,q]$ such that
\[g(v) = \begin{cases} f(v), & \text{if } v \in X; \\
\lambda + q + 1 - f(v), & \text{if } v \in Y. \end{cases} \]
Now, notice that $g(X) \subseteq [0, \lambda]$ and $g(Y) \subseteq [\lambda + 1, q]$.

This implies that g is an injective function and

$$g(x) + g(y) = \lambda + q + 1 - (f(y) - f(x))$$

for each $xy \in E(G)$, where $x \in X$ and $y \in Y$. Thus,

$$\lambda + 1 \leq g(x) + g(y) \leq \lambda + q$$

since $1 \leq f(y) - f(x) \leq q$. Finally, notice that since f is an α-valuation of G, it follows that

$$\{ f(y) - f(x) | x \in X \text{ and } y \in Y \} = [1, q],$$

implying that $\{ g(x) + g(y) | xy \in E(G) \}$ is a set of q consecutive integers. This implies that $\sigma(G) \leq q$; hence, it follows from Theorem 1.2 that $\mu_s(G) \leq q - p + 1$. □

If G is a graph of order p and size q without isolated vertices that is not sequential, then it is clearly true that $\sigma(G) \geq q$. Thus, it follows from Theorem 1.2 that $\mu_s(G) \geq q - p + 1$. Combining this with Theorem 2.1, we have the following result.

Corollary 2.2. If G is a graph of order p and size q without isolated vertices that has an α-valuation and is not sequential, then

$$\mu_s(G) = q - p + 1.$$

3. ON THE DISJOINT UNION OF COMPLETE BIPARTITE GRAPHS

In this section, we study the super edge-magic deficiency of the disjoint union of isomorphic complete bipartite graphs. To do this, we first present necessary and sufficient conditions for such graphs to have an α-valuation.

Rosa [23] observed that all complete bipartite graphs have α-valuations. This result is now extended in the following theorem.

Theorem 3.1. Let m, s and t be integers with $m \geq 1$, $s \geq 2$ and $t \geq 2$. Then the graph $mK_{s,t}$ has an α-valuation if and only if $(m, s, t) \neq (3, 2, 2)$.

Proof. For every two positive integers s and t, the complete bipartite graph $K_{s,t}$ has shown to admit an α-valuation by Rosa [23]. Also, Abrham and Kotzig [1] have proved that $m = 3$ is the only integer such that the 2-regular graph $mC_4 \cong mK_{2,2}$ does not have an α-valuation. Thus, it suffices to show that for all integers m, s and t such that $m \geq 2$ and $t > s \geq 2$ except $(m, s, t) = (3, 2, 2)$, there exists an α-valuation of $mK_{s,t}$. Let $mK_{s,t}$ have partite sets $X = \bigcup_{i=1}^m X_i$ and $Y = \bigcup_{i=1}^m Y_i$, where $X_i = \{ x_{i,j} | i \in [1, m] \text{ and } j \in [1, s] \}$ and $Y_i = \{ y_{i,j} | i \in [1, m] \text{ and } j \in [1, t] \}$ are the partite sets of the i-th component of $mK_{s,t}$. Then define the vertex labeling $f : V(mK_{s,t}) \to [0, mst]$ such that

$$f(x_{i,j}) = (s + 1)(i - 1) - 2 + j,$$
if \(i \in [1, m] \) and \(j \in [1, s] \); and

\[
f(y_{i,j}) = mst - 1 - (st - s - 1)i + s(j - 1),
\]

if \(i \in [1, m] \) and \(j \in [1, t] \).

To show that \(f \) is indeed an \(\alpha \)-valuation of \(mK_{s,t} \), notice first that for each \(i \in [1, m] \),

\[
f(X_i) = \{a_i, a_i + 1, \ldots, a_i + s - 1\}
\]
is a sequence of \(s \) consecutive integers, and

\[
f(Y_j) = \{b_j, b_j + s, \ldots, b_j + s(t - 1)\}
\]
is an arithmetic progression with \(t \) terms and common difference \(s \), where \(a_i = (s + 1)(i - 1) \) and \(b_i = mst - 1 - (st - s - 1)i \). Now, it follows that not only \(f(X_i) \neq f(X_j) \) for \(i \neq j \) and \(f(Y_k) \neq f(Y_l) \) for \(k \neq l \), but also \(f(X_i) \neq f(Y_j) \) for \(i \neq j \). Moreover, it follows that

\[
f(X) \subseteq [a_1, a_m + s - 1] \text{ and } f(Y) \subseteq [b_1, b_1 + s(t - 1)]
\]
or, equivalently,

\[
f(X) \subseteq [0, m(s + 1) - 2] \text{ and } f(Y) \subseteq [m(s + 1) - 1, mst].
\]

This implies that \(f \) is an injective function. Finally, notice that for each \(i \in [1, m] \), the induced edge labels in the \(i \)-th component of \(mK_{s,t} \) are \(st \) consecutive integers of the set

\[
[b_i - a_i, b_i - a_i + st - 1] = [(m - i)st + 1, (m - i + 1)st].
\]

Thus, the induced edge labels are precisely \([1, mst]\). Therefore, \(f \) is an \(\alpha \)-valuation of \(mK_{s,t} \) with critical value \(m(s + 1) - 2 \).

An illustration of Theorem 3.1 is given in Figure 1 for \(m = 2, s = 3 \) and \(t = 4 \).

The remaining part of this section contains results on the super edge-magic deficiency of the graph \(mK_{s,t} \).

We first consider the super edge-magic deficiency of the forest \(mK_{1,n} \). For all positive integers \(m \) and \(n \) such that \(m \) is odd, Figueroa-Centeno et al. [8] have shown that \(\mu_s(mK_{1,n}) = 0 \). When \(m \) is even, we only know that \(\mu_s(mK_{1,1}) = 1 \) for \(m \geq 2 \) (see [10]), and \(\mu_s(mK_{1,2}) = 0 \) for \(m \geq 4 \) (see [3]). Thus, the only instance that needs to be settled is when \(m \) is even and \(n \geq 2 \). For this, we have found the following result.

Theorem 3.2. For all positive integers \(m \) and \(n \) such that \(m \) is even,

\[
\mu_s(mK_{1,n}) \leq 1.
\]

Proof. Let \(F \cong mK_{1,n} \cup K_1 \) be the forest with

\[
V(F) = \{x_i | i \in [1, m]\} \cup \{y_{i,j} | i \in [1, m] \text{ and } j \in [1, n]\} \cup \{z\}
\]

and

\[
E(F) = \{x_i y_{i,j} | i \in [1, m] \text{ and } j \in [1, n]\},
\]

and consider two cases.
Case 1: For \(m = 2 \), define the vertex labeling \(f : V(F) \rightarrow [1, 2n + 3] \) such that
\[
f(x_i) = 2n + 5 - 2i, \quad \text{if } i \in [1, 2];
f(y_{i,j}) = i + 2j - 2, \quad \text{if } i \in [1, 2] \text{ and } j \in [1, n];
\]
and
\[
f(z) = 2n + 2. \quad \text{Notice then that}
\]
\[
\{ f(y_{i,j}) \mid i \in [1, 2] \text{ and } j \in [1, n] \} = [1, 2n]
\]
and
\[
\{ f(x_1), f(x_2), f(z) \} = [2n + 1, 2n + 3],
\]
which implies that \(f \) is a bijective function. Notice also that
\[
\{ f(x_1) + f(y_{i,j}) \mid j \in [1, n] \} = \{ 2n + 2 + 2j \mid j \in [1, n] \}
\]
and
\[
\{ f(x_2) + f(y_{2,j}) \mid j \in [1, n] \} = \{ 2n + 1 + 2j \mid j \in [1, n] \},
\]
implying that
\[
\{ f(u) + f(v) \mid uv \in E(F) \} = [2n + 3, 4n + 2]
\]
is a set of \(2n \) consecutive integers. Thus, by Lemma 1.1, \(f \) extends to a super edge-magic labeling of \(F \) with valence \(6n + 6 \).

Case 2: For \(m = 2k \), where \(k \) is an integer with \(k \geq 2 \), define the vertex labeling \(f : V(F) \rightarrow [1, 2kn + 2k + 1] \) such that
\[
f(x_i) = \begin{cases} 2k(n + 1) + 3 - 2i, & \text{if } i \in [1, k]; \\ 2k(n + 2) + 2 - 2i, & \text{if } i \in [k + 1, 2k]; \end{cases}
\]
\[
f(y_{i,j}) = \begin{cases} i + k(j - 1), & \text{if } i \in [1, k] \text{ and } j \in [1, n]; \\ i + k(n + j - 2) + 1, & \text{if } i \in [k + 1, 2k] \text{ and } j \in [1, n]; \end{cases}
\]
and
\[
f(z) = kn + 1. \quad \text{Notice then that}
\]
\[
\{ f(y_{i,j}) \mid i \in [1, k] \text{ and } j \in [1, n] \} \cup \{ f(z) \} = [1, kn + 1],
\]
\[
\{ f(y_{i,j}) \mid i \in [k + 1, 2k] \text{ and } j \in [1, n] \} = [kn + 2, 2kn + 1],
\]
and
\[
\{ f(x_i) \mid i \in [1, 2k] \} = [2kn + 2, 2kn + 2k + 1],
\]
which implies that \(f \) is a bijective function. Notice also that
\[
\{ f(x_i) + f(y_{i,j}) \mid i \in [1, k] \text{ and } j \in [1, n] \} = [2kn + k + 3, 3kn + k + 2]
\]
and
\[
\{ f(x_i) + f(y_{i,j}) \mid i \in [k + 1, 2k] \text{ and } j \in [1, n] \} = [3kn + k + 3, 4kn + k + 2],
\]
implying that
\[
\{ f(u) + f(v) \mid uv \in E(F) \} = [2kn + k + 3, 4kn + k + 2]
\]
is a set of \(2kn \) consecutive integers. Thus, by Lemma 1.1, \(f \) extends to a super edge-magic labeling of \(F \) with valence \(6kn + 3k + 4 \).

Therefore, we conclude that \(\mu_s(mK_{1,n}) \leq 1 \) for all positive integers \(m \) and \(n \) such that \(m \) is even. \(\square \)
Ivančo and Lučkanícová [18] proved that the forest $K_{1,m} \cup K_{1,n}$ is super edge-magic if and only if either m is a multiple of $n+1$ or n is a multiple of $m+1$. Thus, $\mu_s (2K_{1,n}) \geq 1$ for every positive integer n. Combining this with Theorem 3.2, we obtain the following result.

Corollary 3.3. For every positive integer n,

$$\mu_s (2K_{1,n}) = 1.$$

The previous result supports the validity of the conjecture of Figueroa-Centeno et al. [9] that if F is a forest with two components, then $\mu_s (F) \leq 1$.

Ringel and Lladó [22] proved that a graph of order p and size q is not edge-magic if q is even, $p+q \equiv 2 \pmod{4}$ and each vertex has odd degree. This together with Theorem 3.2 leads us to conclude the following result.

Corollary 3.4. For all positive integers m and n such that $m \equiv 2 \pmod{4}$ and n is odd,

$$\mu_s (mK_{1,n}) = 1.$$

Our final result on the super edge-magic deficiency of forests concerns $mK_{1,3}$.

Corollary 3.5. For every positive integer m,

$$\mu_s (mK_{1,3}) = \begin{cases} 0, & \text{if } m \equiv 4 \pmod{8} \text{ or } m \text{ is odd;} \\ 1, & \text{if } m \equiv 2 \pmod{4}. \end{cases}$$

Proof. Define the forest $4K_{1,3}$ with

$$V (4K_{1,3}) = \{x_i | i \in [1,4]\} \cup \{y_{i,j} | i \in [1,4] \text{ and } j \in [1,3]\}$$

and

$$E (4K_{1,3}) = \{x_i y_{i,j} | i \in [1,4] \text{ and } j \in [1,3]\}.$$

Then the vertex labeling $f : V (4K_{1,3}) \to [1,16]$ such that

$$(f (x_i))_{i=1}^4 = (13, 12, 10, 8);$$

$$(f (y_{1,j}))_{j=1}^3 = (1, 2, 7); \quad (f (y_{2,j}))_{j=1}^3 = (4, 5, 6);$$

$$(f (y_{3,j}))_{j=1}^3 = (3, 9, 11); \quad (f (y_{4,j}))_{j=1}^3 = (14, 15, 16)$$

induces a super edge-magic labeling of $4K_{1,3}$ with valence 41. Now, recall the result presented in [8] that if G is a (super) edge-magic bipartite or tripartite graph and m is odd, then mG is (super) edge-magic. Since the forests $K_{1,3}$ and $4K_{1,3}$ are super edge-magic bipartite graphs, it follows from the mentioned result that $\mu_s (mK_{1,3}) = 0$ when $m \equiv 4 \pmod{8}$ or m is odd. The remaining case is an immediate consequence of Corollary 3.4. \square

The preceding results in this section motivate us to propose the following problem.

Problem 1. For even $m \geq 4$ and $n \geq 3$, determine the exact value of $\mu_s (mK_{1,n})$.
We now direct our attention briefly to the super edge-magic deficiency of the 2-regular graph $mK_{2,2}$. For every positive integer m, Ngurah et al. [21] proved that if m is odd, then $\mu_s(mK_{2,2}) \leq m$ while if m is even, then $\mu_s(mK_{2,2}) \leq m-1$. They also posed the problem of finding a better upper bound for $\mu_s(mK_{2,2})$. However, with the aid of Corollary 2.2, we are able to provide the exact value of $\mu_s(mK_{2,2})$ which we determine to be 1.

Corollary 3.6. For every positive integer m,

$$\mu_s(mK_{2,2}) = 1.$$

Proof. As we mentioned in the proof of Theorem 3.1, the 2-regular graph $3C_4 \cong 3K_{2,2}$ does not admit an α-valuation. Also, Gnanajothi [13] has shown that the 2-regular graph mC_n is sequential if and only if m and n are odd. By adding these facts to Corollary 2.2, we obtain that $\mu_s(mK_{2,2}) = 1$ except for $m = 3$, and $\mu_s(3K_{2,2}) \geq 1$. However, the graph $3K_{2,2} \cup K_1$ is super edge-magic by labeling the vertices in its cycles with $1-8-3-9-1, 2-6-7-12-2, 4-11-5-13-4$, and its isolated vertex with 10 to obtain a valence of 33, which implies that $\mu_s(3K_{2,2}) \leq 1$. Consequently, $\mu_s(mK_{2,2}) = 1$ for every positive integer m. \hfill \square

The previous result adds credence to the conjecture of Figueroa-Centeno et al. [9] that for all integers $m \geq 1$ and $n \geq 3$, $\mu_s(mC_n) = 1$, if $mn \equiv 0 \pmod{4}$.

The final result of this section concerns an upper bound for $\mu_s(mK_{s,t})$. For all integers m, s and t with $m \geq 1$, $s \geq 4$ and $t \geq 4$, Ngurah et al. [21] discovered an upper bound for $\mu_s(mK_{s,t})$, namely, $\mu_s(mK_{s,t}) \leq m(st - s - t) + 1$. Actually, the conditions on s and t in their result can be relaxed as we will see next.

Corollary 3.7. For all integers m, s and t with $m \geq 1$, $s \geq 2$ and $t \geq 2$,

$$\mu_s(mK_{s,t}) \leq m(st - s - t) + 1.$$

Proof. It has already been verified in the proof of Corollary 3.6 that $\mu_s(3K_{2,2}) \leq 1$. Thus, the desired result readily follows from this, and Theorems 2.1 and 3.1. \hfill \square

By Corollaries 1.3, 3.6 and 3.7, we suspect the following conjecture to be true.

Conjecture 1. For all integers m, s and t with $m \geq 1$, $s \geq 2$ and $t \geq 2$,

$$\mu_s(mK_{s,t}) = m(st - s - t) + 1.$$

Of course, if it is true that the graph $mK_{s,t}$ is not sequential for all integers m, s and t with $m \geq 1$ and $s \geq 2$ and $t \geq 2$, so is Conjecture 1 by Corollary 2.2 and Theorem 3.1. However, we do not know whether or not the mentioned statement is true. Thus, we propose the following problem.

Problem 2. For all integers m, s and t with $m \geq 1$, $s \geq 2$ and $t \geq 2$, determine whether or not the graph $mK_{s,t}$ is sequential.
4. Concluding Remarks

We conclude this paper with some remarks on bounds for the super edge-magic deficiency of bipartite graphs and open problems.

Figueras-Centeno et al. [9] have shown that if \(G \) is a bipartite or tripartite graph and \(m \) is odd, then \(\mu_s(mG) \leq m\mu_s(G) \). Unfortunately, this bound is not sharp. For instance, we can easily see that \(\mu_s(K_{2,2}) = 1 \), which implies that \(\mu_s(3K_{2,2}) \leq 3 \); however, we know by Corollary 3.6 that \(\mu_s(3K_{2,2}) = 1 \). Also, the same bound does not hold for even \(m \), since we know that \(\mu_s(K_{1,n}) = 0 \) (see [5]) and \(\mu_s(2K_{1,n}) = 1 \) (see Corollary 3.3). On the other hand, by Corollaries 1.3 and 3.7, we obtain that \(\mu_s(mG) \leq m\mu_s(G) - m + 1 \) when \(G \cong K_{s,t} \). This leads us to ask in the next problem whether a similar upper bound is obtained for any bipartite graph.

Problem 3. Given a bipartite graph \(G \) and an integer \(m \geq 2 \), find a good upper bound for \(\mu_s(mG) \) in terms of \(m \) and \(\mu_s(G) \).

To proceed further, another definition is required here. For two graphs \(G_1 \) and \(G_2 \) with disjoint vertex sets, the cartesian product \(G \cong G_1 \times G_2 \) has \(V(G) = V(G_1) \times V(G_2) \), and two vertices \((u_1, u_2) \) and \((v_1, v_2) \) of \(G \) are adjacent if and only if either \(u_1 = v_1 \) and \(u_2v_2 \in E(G_2) \) or \(v_2 = v_2 \) and \(u_1v_1 \in E(G_1) \). An important class of graphs is defined in terms of cartesian product. The \(n \)-dimensional cube \(Q_n \) is the graph \(K_2 \) if \(n = 1 \), while for \(n \geq 2 \), \(Q_n \) is defined recursively as \(Q_n \times K_2 \). It is easily observed that \(Q_n \) is an \(n \)-regular bipartite graph of order \(2^n \) and size \(n2^{n-1} \).

We now discuss briefly lower and upper bounds for \(\mu_s(Q_n) \). Figueras-Centeno et al. [6] pointed out that \(Q_n \) is super edge-magic if and only if \(n = 1 \). Kotzig [19] has shown that \(Q_n \) has an \(\alpha \)-valuation for all \(n \), whereas the authors proved that \(Q_n \) is sequential for \(n \geq 4 \) (see [17]). Combining these with Corollary 2.2 and Theorem 2.1, we obtain exact values \(\mu_s(Q_1) = 0 \), \(\mu_s(Q_2) = 1 \) and \(\mu_s(Q_3) = 5 \), and the upper bound \(\mu_s(Q_n) \leq (n-2)2^{n-1} + 1 \) for \(n \geq 4 \). It is now important to mention that the largest vertex labeling of the sequential labeling found in [17] is \(n2^{n-1} - 5 \), which implies that \(\sigma(Q_n) \leq n2^{n-1} - 5 \). This together with Theorem 2.1 gives us the upper bound \(\mu_s(Q_n) \leq (n-2)2^{n-1} - 4 \) for \(n \geq 4 \). This bound is certainly better than the above bound obtained by applying an \(\alpha \)-valuation of \(Q_n \) provided in [19] to Theorem 2.1. Figueras-Centeno et al. [8] found an upper bound for the size of a super edge-magic triangle-free graph of order \(p \geq 4 \) and size \(q \), namely, \(q \leq 2p - 5 \). By utilizing this, we obtain the lower bound \(\mu_s(Q_n) \geq (n - 4)2^{n-2} + 3 \) for \(n \geq 2 \). In the light of the mentioned bounds and exact values for \(\mu_s(Q_n) \), we finally propose the following two problems.

Problem 4. For every integer \(n \geq 4 \), find better lower and upper bounds for \(\mu_s(Q_n) \).

Problem 5. For every integer \(n \geq 4 \), determine the exact value of \(\mu_s(Q_n) \).

Acknowledgments. The authors wish to thank Dr. Francesc A. Muntaner-Batle for his insight, encouragement, and pleasant company while this work was in progress.
References

