Main Article Content
Abstract
In this paper we analyse briefly some properties of hemi-slant sub-manifold of (LCS)n-manifold. Here we discuss about some necessary and sufficient conditions for distributions to be integrable and obtain some results in this direction. We also study the geometry of leaves of hemi-slant submanifold of (LCS)n-manifold. At last we give an example of a hemi-slant submanifold of an (LCS)n-manifold.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- Abutuqayqah, H.I., Geometry of hemi-slant submanifolds of almost contact manifolds, King Abdulaziz University, 2012.
- Al-Solamy, F.R., Khan, M.A., and Uddin, S., Totally umbilical hemi-slant submanifolds of Kahler manifold, Abstr. Appl. Anal., (2011).
- Carriazo, A., New developments in slant submanifold theory, Narosa Publishing House, New Delhi, 2002.
- Khan, M.A., Totally umbilical hemi-slant submanifolds of cosymplectic manifolds, Math. Aeterna, 3:8 (2013), 645-653.
- Khan, M.A., Singh, K., and Khan, V.A., Slant-submanifold of LP-contact manifolds, Differ. Geom. Dyn. Syst., 12 (2010), 102-108.
- Khan, M.A., Uddin, S., and Singh, K., A classification on totally umbilical proper slant and hemi-slant submanifolds of a nearly trans-Sasakian manifold, Differ. Geom. Dyn. Syst., 13 (2011), 117-127.
- Laha, B. and Bhattacharyya, A., Totally umbilical hemi-slant submanifolds of LP-Sasakian manifold, Lobachevskii J. Math., 36:2 (2015), 127-131.
- Lone, M.A., Lone, M.S., and Shahid, M.H., Hemi-slant submanifolds of cosymplectic manifolds, Cogent Math. Stat., 3:1 (2016), 1204143.
- Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roum. (N.S), 39 (1996), 183-198.
- Patra, C., Laha, B., and Bhattacharyya, A., On hemi-slant submanifold of Kenmotsu manifold, Int. J. Math. Comb., 1 (2019), 62-72.
- Siddesha, M.S., Bagewadi, C.S., and Venkatesha, S., On the geometry of hemi-slant submanifolds of LP-cosymplectic manifold, Asian J. Math. Appl., (2018).
- Tastan, H.M., and Ozdemir, F., The geometry of hemi-slant submanifolds of a locally product Riemannian manifold, Turk. J. Math., 39:2 (2015), 268-284.
- Tastan, H.M., and Gerdan, S., Hemi-slant submanifolds of a locally conformal Kahler manifold, Int. Electron. J. Geom., 8:2 (2015), 46-56
References
Abutuqayqah, H.I., Geometry of hemi-slant submanifolds of almost contact manifolds, King Abdulaziz University, 2012.
Al-Solamy, F.R., Khan, M.A., and Uddin, S., Totally umbilical hemi-slant submanifolds of Kahler manifold, Abstr. Appl. Anal., (2011).
Carriazo, A., New developments in slant submanifold theory, Narosa Publishing House, New Delhi, 2002.
Khan, M.A., Totally umbilical hemi-slant submanifolds of cosymplectic manifolds, Math. Aeterna, 3:8 (2013), 645-653.
Khan, M.A., Singh, K., and Khan, V.A., Slant-submanifold of LP-contact manifolds, Differ. Geom. Dyn. Syst., 12 (2010), 102-108.
Khan, M.A., Uddin, S., and Singh, K., A classification on totally umbilical proper slant and hemi-slant submanifolds of a nearly trans-Sasakian manifold, Differ. Geom. Dyn. Syst., 13 (2011), 117-127.
Laha, B. and Bhattacharyya, A., Totally umbilical hemi-slant submanifolds of LP-Sasakian manifold, Lobachevskii J. Math., 36:2 (2015), 127-131.
Lone, M.A., Lone, M.S., and Shahid, M.H., Hemi-slant submanifolds of cosymplectic manifolds, Cogent Math. Stat., 3:1 (2016), 1204143.
Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roum. (N.S), 39 (1996), 183-198.
Patra, C., Laha, B., and Bhattacharyya, A., On hemi-slant submanifold of Kenmotsu manifold, Int. J. Math. Comb., 1 (2019), 62-72.
Siddesha, M.S., Bagewadi, C.S., and Venkatesha, S., On the geometry of hemi-slant submanifolds of LP-cosymplectic manifold, Asian J. Math. Appl., (2018).
Tastan, H.M., and Ozdemir, F., The geometry of hemi-slant submanifolds of a locally product Riemannian manifold, Turk. J. Math., 39:2 (2015), 268-284.
Tastan, H.M., and Gerdan, S., Hemi-slant submanifolds of a locally conformal Kahler manifold, Int. Electron. J. Geom., 8:2 (2015), 46-56