Main Article Content

Abstract

The mathematical chemistry deals with applications of graph theory to study the physicochemical properties of molecules theoretically. A topological index of a graph is a numeric quantity obtained from the graph mathematically. A cactus graph is a connected graph in which no edges lie in more than one cycle. In this paper, we compute Gourava and hyper-Gourava indices of some cactus chains.

Keywords

Gourava indices hyper-Gourava indices cactus chains.

Article Details

How to Cite
B., B., & Policepatil, S. (2021). Gourava and Hyper-Gourava Indices of Some Cactus Chains. Journal of the Indonesian Mathematical Society, 27(3), 297–307. https://doi.org/10.22342/jims.27.3.989.249-261

References

  1. Alikhani, S., Jahari, S., Mehryar, M. and Hasni, R., Counting the number of dominating sets of cactus chains, Opt. Adv. Mat. Rapid Commun., 8(9-10) (2014), 955-960.
  2. Basavanagoud, B. and Policepatil, S., Chemical applicability of Gourava and hyper-Gourava indices, Nanosystems: Physics, Chemistry, Mathematics, 12(2) (2021), 142-150.
  3. De, N., General Zagreb index of some cactus chains, Open Journal of Discrete Applied Mathematics, 2(1) (2019), 24-31.
  4. Gutman, I. and Trinajsti´c, N., Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (4) (1972), 535-538.
  5. Harary, F., Graph Theory, Addison-Wesely, Reading Mass, 1969.
  6. Kulli, V. R., The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017), 33-38.
  7. Kulli, V. R., On hyper-Gourava indices and coindices, International Journal of Mathematical Archieve, 8(12) (2017), 116-120.
  8. Kulli, V. R., The Product connectivity Gourava index, Journal of Computer and Mathematical Science, 8(6) (2017), 235-242.
  9. Kulli, V. R., On the sum connectivity Gourava index, International Journal of Mathematical Archieve, 8(6) (2017), 211-217.
  10. Kulli, V. R., Computation of some Gourava indices of titania nanotubes, Intern. J. Fuzzy Mathematical Archieve, 12(2) (2017), 75-81.
  11. Kulli, V. R., Some Gourava indices and inverse sum indeg index of certain networks, International Research Journal of Pure Algebra, 7(7) (2017), 787-798.
  12. Mirajkar, K. G., and Pooja, B., On Gourava indices of some chemical graphs, International Journal of Applied Engineering Research, 14(3) (2019), pp. 743-749.
  13. Sadeghieh, A., Alikhani, S., Ghanbari N., and Khalaf, A. J. M., Hosoya polynomial of some cactus chains, Cogent Mathematics and statistics, 4(1), 1305638.
  14. Sadeghieh, A., Ghanbari, N., and Alikhani, S., Computation of Gutman index of some cactus chains, Electron. J. Graph Theory Appl., 6(1) (2018), 138-151