Main Article Content
Abstract
Keywords
Article Details
References
- S.L. Singh, S. Czerwik, K. Kr ol, A. Singh,, Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24, (2008), 401416.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1, (1993), 5-11.
- S. Czerwick, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico dellUniversit‘a di Modena, 46, (1998), 263276.
- Ei Ei Nyein, Dianlu Tian, Aung Khaing Zaw, Quasi (s,r)-Contractive Multi-Valued Operators and Related Fixed Point Theorems, Mathematics, 2020, 8(1), 64; doi:10.3390/math8010064.
- M. Jleli, B. Samet, C. Vetro, F. Vetro, Fixed points for multivalued mappings in b-metric spaces, Abstract and Applied Analysis, 2015 (2015), 1-7.
- William Kirk, Naseer Shahzad, Fixed Point Theory in Distance Spaces, Springer, New York, (2014).
- Radu Miculescu, Alexandru Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, arXiv:1512.03967v1 [math.CA] 12, Dec (2015).
- H. Aydi, M.F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory and Applications, 2012, (2012): 88.
- L.B. Ciric, A generalization of Banachs contraction principle, Proc. Amer. Math. Soc., 45 (2) (1974), 267273.
- S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475488.
- O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math., 137, (2013), 30-44.
- A. Amini-Harandi, Fixed point theory for set-valued quasi-contraction maps in metric spaces, Appl. Math. Lett., 24, (2011), 1791-1794.
- R.H. Haghi,S. Rezapour, N. Shahzad, On fixed points of quasi-contraction type multifunctions, Appl. Math. Lett., 25, (2012), 843-846.
- Lingjuan Ye, Congcong Shen, weakly (s,r)-contractive multi-valued operators on b-mettric space, J.Nonlinear Sci. Appl., 11 (2018), 358-367.
- J.R. Roshan, V. Parvaneh, Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229245.
- M. Boriceanu, M. Bota, A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367-377.
References
S.L. Singh, S. Czerwik, K. Kr ol, A. Singh,, Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24, (2008), 401416.
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1, (1993), 5-11.
S. Czerwick, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico dellUniversit‘a di Modena, 46, (1998), 263276.
Ei Ei Nyein, Dianlu Tian, Aung Khaing Zaw, Quasi (s,r)-Contractive Multi-Valued Operators and Related Fixed Point Theorems, Mathematics, 2020, 8(1), 64; doi:10.3390/math8010064.
M. Jleli, B. Samet, C. Vetro, F. Vetro, Fixed points for multivalued mappings in b-metric spaces, Abstract and Applied Analysis, 2015 (2015), 1-7.
William Kirk, Naseer Shahzad, Fixed Point Theory in Distance Spaces, Springer, New York, (2014).
Radu Miculescu, Alexandru Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, arXiv:1512.03967v1 [math.CA] 12, Dec (2015).
H. Aydi, M.F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory and Applications, 2012, (2012): 88.
L.B. Ciric, A generalization of Banachs contraction principle, Proc. Amer. Math. Soc., 45 (2) (1974), 267273.
S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475488.
O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math., 137, (2013), 30-44.
A. Amini-Harandi, Fixed point theory for set-valued quasi-contraction maps in metric spaces, Appl. Math. Lett., 24, (2011), 1791-1794.
R.H. Haghi,S. Rezapour, N. Shahzad, On fixed points of quasi-contraction type multifunctions, Appl. Math. Lett., 25, (2012), 843-846.
Lingjuan Ye, Congcong Shen, weakly (s,r)-contractive multi-valued operators on b-mettric space, J.Nonlinear Sci. Appl., 11 (2018), 358-367.
J.R. Roshan, V. Parvaneh, Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229245.
M. Boriceanu, M. Bota, A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367-377.