First Eigenvalue of p-Laplacian Along The Normalized Ricci Flow on Bianchi Classes

Mohammad Javad Habibi Vosta Kolaei (1), Shahroud Azami (2)
(1) Imam Khomeini International University, Iran, Islamic Republic of,
(2) Imam Khomeini International University, Iran, Islamic Republic of

Abstract

Consider M as a 3-homogeneous manifold. In this paper, we are going to study the behavior of the first eigenvalue of p-Laplace operator in a case of Bianchi classes along the normalized Ricci flow also we will give some upper and lower bounds for a such eigenvalue.

Full text article

Generated from XML file

References

A. Abolarinwa, Evolution and monotonicity of the first eigenvalue of p-Laplacian under the Ricci harmonic flow, J. Appl. Anal., 21(2) (2015), 147-160.

S. Azami, Eigenvalue variation of the p-Laplacian under the Yamabe flow, Cogent Mathematics, 3 (2016), 1236566.

S. Azami, Monotonicity of eigenvalues of Witten-Laplace operator along the RicciBourguignon flow, AIMS mathematics, 2(2)(2017), 230-243.

X. Cao, Eigenvalues of −∆ + R2 on manifolds with nonnegative curvature operator, Math. Ann., 337(2) (2007), 435-442.

X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc, 136(11) (2008), 4075-4078.

X. Cao, J. Guckenheimer and L. Saloff-Coste, The backward behavior of the Ricci and cross curvature flows on SL (2; R), Comm. Anal. Geom., 17(4) (2009), 777-796.

X. Cao and L. Saloff-Coste, Backward Ricci flow on locally homogeneous three-manifolds, Comm. Anal. Geom., 12(2), (2009) 305-325.

X. Cao, S. Hou and J. Ling, Estimates and monotonicity of the first eigenvalue under the Ricci flow, Math. Ann. 345 (2012), no. 2, 451-463.

D. Friedan, Nonlinear models in 2+ dimensions, Annals of physics 163 (31) (1985), 318-419.

R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306.

S. Hou, Eigenvalues under the backward Ricci flow on locally homogeneous closed 3-manifolds, Acta Mathematica Sinica, English series, 136(11) (2018), 1179-1194.

S. Hou, Eigenvalues under the Ricci flow of model geometries, (Chinese) Acta Math. Sinica (Chin. ser.) 60 (2017), no. 4, 583-594.

F. Korouki and A. Razavi, Bounds for the first eigenvalue of (−∆ − R) under the Ricci flow on Bianchi classes, Bull. Braz. Math. Soc, (2019).

J. Li, Eigenvalues and energy functionals with monotonicity formula under Ricci flow, Math. Ann., 338 (2007), 927-946.

J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math., 21(3) (1976), 293-329.

G. Perelman, The entropy formula for the Ricci flow and it’s geometric applications, Arxiv (2002).

L. Wang, Eigenvalue estimate for the weighted p-Laplace, Annali di Matematica, 191 (2012), 539-550.

L. Wang, Gradient estimates on the weighted p-Laplace heat equation, J. Diff. Equ., 264 (2018), 506-524.

J. Wu, E. Wang and Y. Zheng, First eigenvalue of the p-Laplace operator along the Ricci flow, Ann. Glob. Anal. Geom., 38(1) (2009), 27-55.

J. Wu, First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow, Acta Mathematica Sinica, English series, (2011), 1591-1598

Authors

Mohammad Javad Habibi Vosta Kolaei
MJ.Habibi@Edu.ikiu.ac.ir (Primary Contact)
Shahroud Azami
Habibi Vosta Kolaei, M. J., & Azami, S. (2020). First Eigenvalue of p-Laplacian Along The Normalized Ricci Flow on Bianchi Classes. Journal of the Indonesian Mathematical Society, 26(3), 380–392. https://doi.org/10.22342/jims.26.3.934.380-392
Copyright and license info is not available

Article Details

Crossref
Scopus
Google Scholar
Europe PMC