Main Article Content

Abstract

We introduce the concepts of $\beta$-prime submodules and weakly $\beta$-prime submodules of unital left modules over a commutative ring with nonzero identity. Some properties of these concepts are investigated. We use the notion of the product of two submodules to characterize $\beta$-prime submodules of a multiplication module. Characterization of $\beta$-prime and weakly $\beta$-prime submodules of arbitary modules are also given.

Article Details

Author Biography

Thawatchai Khumprapussorn, King Mongkut's Institute of Technology Ladkrabang

http://www.math.sci.kmitl.ac.th/include/view.php?p_id=21
How to Cite
Khumprapussorn, T. (2019). On Beta-Prime Submodules. Journal of the Indonesian Mathematical Society, 25(2), 128–138. https://doi.org/10.22342/jims.25.2.759.128-138

References

  1. begin{thebibliography}{99}
  2. bibitem{1} Ameri, R.: On the prime submodules of multiplication modules, {em International Journal of Mathematics and Mathematical Sciences}, textbf{27} (2003), 1715-1724.
  3. bibitem{2} Atani, S.E., Farzalipour, F.: On weakly prime submodules, {em Tamkang
  4. Journal of Mathematics}, textbf{38}(3) (2007), 247-252.
  5. bibitem{3} El-Bast, Z., Smith, P.F.: Multiplication modules, {em Communications in Algebra}, textbf{16}(4) (1988), 755-779.
  6. end{thebibliography}