Main Article Content

Abstract

In this paper, the authors introduce two new classes of generalized convex
functions of two independent variables, and establish a new integral
identity, from which they derive some new fractional Ostrowski's integral
inequalities for functions whose second derivatives are in these new classes
of functions.

Article Details

How to Cite
Meftah, B., , M. M., & Souahi, A. (2019). Fractional Ostrowski Type Inequalities for Functions Whose Mixed Derivatives are Prequasiinvex and alpha-Prequasiinvex Functions. Journal of the Indonesian Mathematical Society, 25(2), 92–107. https://doi.org/10.22342/jims.25.2.751.92-107

References

  1. W. Alshanti, and A. Qayyum, A Note On New Ostrowski Type
  2. Inequalities Using A Generalized Kernel, Bulletin of Mathematical Analysis
  3. and Applications. 9 (2017), no.1, 1-18.
  4. N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality
  5. for double integrals and applications for cubature formulae. Soochow J.
  6. Math. 27 (2001), no. 1, 1--10.
  7. G. Farid, Some new Ostrowski type inequalities via fractional
  8. integrals. Int. J. Anal. App., 14 (2017), no. 1, 64-68.
  9. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and
  10. applications of fractional differential equations. North-Holland Mathematics
  11. Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
  12. M. A. Latif, S. Hussain and S. S. Dragomir, Refinements of
  13. Hermite-Hadamard-type inequalities for co-ordinated quasi-convex functions.
  14. International Journal of Mathematical Archive. 3 (2012), no 1, 161-171.
  15. M. A. Latif and S. Hussain, New inequalities of Ostrowski type
  16. for co-ordineted convex functions via fractional integrals. J. Fract. Calc.
  17. Appl. 2 (2012), no. 9, 1-15.
  18. M. Matloka, On some Hadamard-type inequalities for $(h_{1},h_{2})$%
  19. -preinvex functions on the co-ordinates. J. Inequal. Appl. 2013, 2013:227,
  20. pp.
  21. B. Meftah, Some New Ostrwoski's Inequalities for Functions Whose
  22. nth Derivatives are $r$-Convex. International Journal of Analysis, 2016, 7
  23. pages.
  24. B. Meftah, Ostrowski inequalities for functions whose first
  25. derivatives are logarithmically preinvex. Chin. J. Math. (N.Y.) 2016, Art.
  26. ID 5292603, 10 pp.
  27. B. Meftah, New Ostrowski's inequalities. Rev. Colombiana Mat. 51
  28. (2017), no. 1, 57--69.
  29. B. Meftah, Ostrowski inequality for functions whose first
  30. derivatives are $s$-preinvex in the second sense. Khayyam J. Math. 3 (2017),
  31. no. 1, 61--80.
  32. B. Meftah, Fractional Ostrowski type inequalities for functions
  33. whose first derivatives are $s$-preinvex in the second sense. International
  34. Journal of Analysis and Applications 15 (2017), no. 2, 146--154.
  35. bibitem{} B. Meftah, Some new Ostrowski's inequalities for n-times
  36. differentiable mappings which are quasi-convex. Facta Univ. Ser. Math.
  37. Inform. 32 (2017), no. 3, 319--327.
  38. B. Meftah, Fractional Ostrowski type inequalities for functions
  39. whose first derivatives are $varphi $-preinvex. J. Adv. Math. Stud. 10
  40. (2017), no. 3, 335-347.
  41. B. Meftah , Some new Ostrowski inequalities for functions whose $%
  42. n^{th}$ derivatives are logarithmically convex. Ann. Math. Sil. De Gruyter
  43. Open.
  44. A. Ostrowski, Alexander, "{U}ber die Absolutabweichung einer
  45. differentiierbaren Funktion von ihrem Integralmittelwert. (German) Comment.
  46. Math. Helv. 10 (1937), no. 1, 226--227.
  47. M. E. "{O}zdemir, H. Kavurmaci and E. Set, Ostrowski's type
  48. inequalities for $(alpha ,m)$-convex functions. Kyungpook Math. J. 50
  49. (2010), no. 3, 371--378.
  50. B. G. Pachpatte, A new Ostrowski type inequality for double
  51. integrals. Soochow J. Math. 32 (2006), no. 2, 317--322.
  52. M. Z. Sarikaya, On the Ostrowski type integral inequality. Acta
  53. Math. Univ. Comenian. (N.S.) 79 (2010), no. 1, 129--134.
  54. M. Z. Sarikaya and H. Ogunmez, On the weighted Ostrowski-type
  55. integral inequality for double integrals. Arab. J. Sci. Eng. 36 (2011), no.
  56. , 1153--1160.
  57. M. Z. Sari kaya, On the Hermite-Hadamard-type inequalities for
  58. co-ordinated convex function via fractional integrals. Integral Transforms
  59. Spec. Funct. 25 (2014), no. 2, 134--147.
  60. E. Set, New inequalities of Ostrowski type for mappings whose
  61. derivatives are $s$-convex in the second sense via fractional integrals.
  62. Comput. Math. Appl. 63 (2012), no. 7, 1147--1154.
  63. B. -Y. Xi, J. Sun, and S. -P. Bai, On some Hermite-Hadamard-type
  64. integral inequalities for co-ordinated $left( alpha ,QCright) $- and $%
  65. left( alpha ,CJright) $-convex functions. Tbilisi Math. J. 8 (2015), no.
  66. , 75--86.
  67. Q. Xue, J. Zhu and W. Liu, A new generalization of Ostrowski-type
  68. inequality involving functions of two independent variables. Comput. Math.
  69. Appl. 60 (2010), no. 8, 2219--2224.