Main Article Content

Abstract

Let G be a finite group and \hat{G} be the set of all irreducible complex characters of G. In this paper, we consider <\hat{G}, *> as a polygroup, where for each chi_i ,chi_j in \hat{G} the product \chi _{i} * \chi_{j} is the set of those irreducible constituents which appear in the element-wise product \chi_{i} \chi_{j}. We call that \hat{G} simple if it has no proper normal subpolygroup and show that if \hat{G} is a single power cyclic polygroup, then \hat{G} is a simple polygroup and hence \hat{S}_{n} and \hat{A}_{n} are simple polygroups. Also, we prove that if G is a non-abelian simple group, then \hat{G} is a single power cyclic polygroup. Moreover, we classify \hat{D}_{2n} for all n. Also, we prove that \hat{T}_{4n} and \hat{U}_{6n} are cyclic polygroups with finite period.

Keywords

Character of group hypergroup polygroup cyclic hyper- group fundamental relation

Article Details

Author Biographies

Sara Sekhavatizadeh, Tarbiat Modares University

Department of Mathematics

Mohammad Mehdi Zahedi, Graduate University of Advanced Technology

Professor of Mathematics

Ali Iranmanesh, Tarbiat Modares University

Professor of Mathematics
How to Cite
Sekhavatizadeh, S., Zahedi, M. M., & Iranmanesh, A. (2020). Character Table Groups and Extracted Simple and Cyclic Polygroups. Journal of the Indonesian Mathematical Society, 26(1), 22–36. https://doi.org/10.22342/jims.26.1.742.22-36

References

  1. Brauer, R. "{On pseudo groups}", {em J. Math. Soc. Japan}. 20 (1968),
  2. -22.
  3. Comer, S.D., "Hyperstructures associated with character algebra and color schemes", {em New Frontiers in Hyperstructures}, Hadronic Press, (1996) 49-66.
  4. Corsini, P., {em Prolegomena of Hypergroup Theory}, ( Aviani Editore, Tricesimo), (1993).
  5. Davvaz, B., {em Polygroup Theory and Related Systems}, World Scientific Publishing co. Pte. Ltd, (2013).
  6. James. G., Liebeck. M, {em Representations and characters of groups}, Cambridge Univ. Press, (1993).
  7. Konguetsof, L., Vougiouklis, T., Kessoglides, M. and Spartalis, S., "{ On cyclic hypergroups with period}", {em Acta Univ. Carolinae-Math. Physica.} 28 (1987), no 1, 3-7.
  8. Leoreanu, V., "{ About the simplifiable cyclic semihypergroups}", {em Italian J. Pure Appl. Math.} 7 (2000), 69-76.
  9. Mittas, J., "Hypergroupes canoniques hypervalues",(French), {em C. R. Acad. Sci. Paris Ser, A-B}, 271 (1970), A4- A-7.
  10. Roth, R.L., "{ Character and conjugacy class hypergroups of a finite group}", {em Ann. Math. Pura Appl.} 105 (1975), 295-311.
  11. Sekhavatizadeh, S., Zahedi, M.M. and Iranmanesh, A., "{ Cyclic hypergroups which are induced by the character of some finite groups}", {em Italian j. pure appl.} 33 (2014), 123-132.
  12. Vougiouklis, T., "{ Cyclicity in a special class of hypergroups}", {em Acta Univ. Carolinae-Math.}
  13. et Physica. 22 (1981), 3-6.
  14. Wall, H.S., "{ Hypergroups}", {em Amer. J. Math.} 59 (1937), 77-98.