The Probability That an Ordered Pair of Elements is an Engel Pair

S.M. Jafarian Amiri (1) , Hojjat Rostami (2)
(1) Department of Mathematics, University of Zanjan, Iran, Islamic Republic of,
(2) Department of Mathematics, Faculty of Sciences, University of Zan- jan,P.O.Box 45371-38791, Zanjan, Iran, Iran, Islamic Republic of

Abstract

Let G be a nite group. We denote by ep(G) the probability that
[x;n y] = 1 for two randomly chosen elements x and y of G and some posi-
tive integer n. For x 2 G we denote by EG(x) the subset fy 2 G : [y;n x] =
1 for some integer ng. G is called an E-group if EG(x) is a subgroup of G for all
x 2 G. Among other results, we prove that if G is an non-abelian E-group with
ep(G) > 1
6 , then G is not simple and minimal non-solvable.

Full text article

Generated from XML file

Authors

S.M. Jafarian Amiri
Hojjat Rostami
h.rostami5991@gmail.com (Primary Contact)
Amiri, S. J., & Rostami, H. (2019). The Probability That an Ordered Pair of Elements is an Engel Pair. Journal of the Indonesian Mathematical Society, 25(2), 121–127. https://doi.org/10.22342/jims.25.2.693.121-127
Copyright and license info is not available

Article Details