Regularity Of Cubic Graph With Application

Hossein Rashmanlou, Kishore Kumar Krishna, Ali Asghar Talebi


A cubic graph is a generalized structure of a fuzzy graph that gives moreprecision, flexibility and compatibility to a system when compared with systems thatare designed using fuzzy graphs. In this paper, some properties of an edge regularcubic graph are given. Particularly, strongly regular, edge regular and bi-regularcubic graphs are defined and the necessary and sucient condition for a cubic graphto be strongly regular is studied. Likewise, we have introduced a partially edgeregular cubic graph and fully edge regular cubic graph with suitable illustrations.Finally, we gave an application of cubic digraph in travel time.


Cubic graph, strongly regular cubic graph, bi-regular cubic graph.

Full Text:



M. Akram and W. A. Dudec, Interval-valued fuzzy graphs, Computers and

Mathematics with Applications, 61 (2011), 289-299.

P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letters, 6

(1987), 297-302.

J. Hongmei, W. Lianhua, Interval-valued fuzzy subsemigroups and subgroups

sssociated by intervalvalued suzzy graphs, in: 2009 WRI Global Congress on

Intelligent Systems, 2009,484-487.

Y. B. Jun, Ch. S. Kim, K. O. Yang, Cubic sets, Annals of Fuzzy Mathematics and

Informatics, 4 (1) (2012), 83-98.

A. Kauman, Introduction a la theorie des sous-emsembles 503 flous, Masson et

Cie 1 (1973).

M. G. Karunambigai, K. Palanivel and S. Sivasankar, Edge regular intuitionistic

fuzzy graph, Advances in Fuzzy Sets and Systems, 20 (1) (2015), 25-46.

L. J. Kohout, W. Bandler, Fuzzy interval inference utilizing the checklist paradigm

and BKrelational products, in: R.B. Kearfort et al. (Eds.), Applications of Interval

Computations, Kluwer, Dordrecht, 1996, pp. 291-335.

J. N. Mordeson, C. S. Peng, Operations on fuzzy graphs, Information Sciences, 79

(1994), 159-170.

J. N. Mordeson, P. S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica Verlag,

Heidelberg, 1998. Second edition, 2001.

H. Rashmanlou and M. Pal, Some properties of highly irregular interval-valued

fuzzy graphs, World Applied Sciences Journal, 27 (12) (2013), 1756-1773.

H. Rashmanlou, S. Samanta, M. Pal and R. A. Borzooei, A study on bipolar fuzzy

graphs,Journal of Intelligent and Fuzzy Systems, 28 (2015), 571-580.

H. Rashmanlou, S. Samanta, M. Pal and R. A. Borzooei, Bipolar fuzzy graphs with

categorical properties, International Journal of Computational Intelligent Systems,

(5) (2015), 808-818.

A. Rosenfeld, Fuzzy graphs, in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.), Fuzzy

Sets andTheir Applications, Academic Press, New York, 1975, pp. 77-95.

R. Sambuc, Functions -Flous, Application alaide au Diagnostic en Pathologie

Thyroidienne, These de Doctorat en Medecine, Marseille, 1975.

M. S. Sunitha, A. Vijayakumar, Complement of a fuzzy graph, Indian Journal of

Pure and Applied Mathematics, 33 (2002), 1451-1464.

S. Samanta, M. Pal and M. Akram, m-step fuzzy competition graphs, Journal of

Applied Mathematics and Computing, 47 (2015), 461472.

S. Samanta and M. Pal, Fuzzy tolerance graphs, International Journal Latest Trend

Mathematics, 1 (2) (2011), 57-67.

S. Samanta and M. Pal, Fuzzy threshold graphs, CiiT International Journal of Fuzzy

Systems, 3 (12) (2011), 360-364.

S. Samanta and M. Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs,

Fuzzy Engineering and Information, 5 (2) (2013), 191-204.

S. Samanta, M. Pal and A. Pal, New concepts of fuzzy planar graph, International

Journal of Advanced Research in Artificial Intelligence, 3 (1) (2014), 52-59.

I. B. Turksen, Interval-valued strict preference with Zadeh triples, Fuzzy Sets and

Systems, 78 (1996), 183-195.

L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

L. A. Zadeh, The concept of a linguistic variable and its application to approximate

reasoning-I, Information Sciences, 8 (1975), 199-249.



  • There are currently no refbacks.

Journal of the Indonesian Mathematical Society
Mathematics Department, Universitas Gadjah Mada
Senolowo, Sinduadi, Mlati, Sleman Regency, Special Region of Yogyakarta 55281, Telp. (0274) 552243

p-ISSN: 2086-8952 | e-ISSN: 2460-0245

Journal of the Indonesian Mathematical Society is licensed under a Creative Commons Attribution 4.0 International License

web statistics
View My Stats