On The Geometric Continued Fractions in Positive Characteristic

Hassen Kthiri, Sana Driss

Abstract


In this paper we study another form in the field of formal power series over a finite field. If the continued fraction of a formal power seriesin $\mathbb{F}_q((X^{-1}))$ begins with sufficiently largegeometric blocks, then $f$ is transcendental.

Full Text:

PDF

References


bibitem{AB} B. Adamczewski and Y. Bugea., “On the Maillet-Baker continued fractions”, {em J. Reine Angew. Math.},

textbf{606} (2007), 105-121.

bibitem{B} A. Baker. , “Continued fractions of trascendental numbers”, {em Mathematika.}, textbf{9} (1962), 1-8.

bibitem{ABOS} A. Baker., “On Mahler's classification of transcendental numbers”, {em Acta Math.}, textbf{111} (1964), 97–120.

bibitem{BS} L.E. Baum and H.M. Sweet., “Continued fractions of algebraic power series in characteristic 2”,{em Ann. Math.},

textbf{103} (1976), 593-610.

bibitem{jlddac} J. L. Davison., “A class of transcendental numbers with bounded partial quotients”, {em In

In R. A. Mollin, ed., Number Theory and Applications}, pp. 365–371, Kluwer Academic

Publishers, 1989.

bibitem{hdkf} H. Davenport., K.F. Roth., “Rational approximations to algebraic numbers”,

{em Mathematika.}, textbf{2} (1955) 160–167.

bibitem{HMT} M. Hbaib, M. Mkaouar and K. Tounsi., “Un crit`{e}re de transcendance dans le corps des s'eries

formelles $mathbb{F}_q((X^{-1}))$”, {em J. Number Theory.}, textbf{116} (2006), 140-149.

bibitem{K} A. Khintchine., “Continued fractions”,

{em Gosudarstv.} Izdat. Tech-Teor. Lit. Moscow-Leningrad, 2$^{nd}$ edition, 1949, (In Russian).

bibitem{L} J. Liouville., “Sur des classes tr`{e}s 'etendues de quantit'es dont la valeur n'est ni alg'ebrique ni m^eme r'eductibles `{a} des rationnelles alg'ebriques”, {em J. Math. Pures Appl.}, textbf{16} (1851), 133-142.

bibitem{M} E. Maillet., “Introduction `{a} la th'eorie des nombres transcendants et des propri'et'es arithm'etiques des fonctions”,

{em Gauthier-Villars.}, Paris, 1906.

bibitem{MR} W.H. Mills and D.P. Robbins., “Continued fractions for certain algebraic power series”,

{em J. Number Theory.}, textbf{23} (1986), 388-404.

bibitem{M1} M. Mkaouar., “Fractions continues et s'eries formelles alg'ebriques r'eduites”,

{em Port. Math.}, textbf{58} (2001).

bibitem{M2} M. Mkaouar., “Transcendance de certaines fractions continues dans le corps des s'eries formelles”,

{em J. Algebra.}, textbf{281} (2004), 502-507.

bibitem{P} O. Perron., “Die Lehre von den Kettenbr"{u}chen”, {em Teubner}, Leipzig, 1929.

bibitem{sh} W.M. Schmidt., “Diophantine approximation”, {em Lecture Notes in Mathematics}, vol. 785. Springer, Berlin (1980)




DOI: https://doi.org/10.22342/jims.24.2.525.%25p

Refbacks




Journal of the Indonesian Mathematical Society
Mathematics Department, Universitas Gadjah Mada
Senolowo, Sinduadi, Mlati, Sleman Regency, Special Region of Yogyakarta 55281, Telp. (0274) 552243
Email: jims.indoms@gmail.com


p-ISSN: 2086-8952 | e-ISSN: 2460-0245


Journal of the Indonesian Mathematical Society is licensed under a Creative Commons Attribution 4.0 International License

web statistics
View My Stats