Main Article Content
Abstract
Keywords
Article Details
References
- P. J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (2011)
- -1222.
- P.J. Cameron, The power graph of a finite group, II, J. Group Theory 13 (2010) 779-783.
- S. Chattopadhyaya and P. Panigrahi, On Laplacian spectrum of power graphs of finite cyclic and
- dihedral groups, Linear Multilinear Algebra 63(7) (2015) 1345-1355.
- A. Hamzeh and A. R. Ashrafi, The main supergraph of the power graph of a finite group, submitted.
- A. Hamzeh and A. R. Ashrafi, Automorphism group of supergraphs of the power graph of a finite
- group, European J. Combin., 60 (2017) 82-88.
- A. Hamzeh, Spectrum and L-spectrum of the cyclic group, Southeast Asian Bull. Math., accepted.
- A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph and its main
- supergraph for certain finite groups, submitted.
- A. Kelarev, J. Ryan and J. Yearwood, Cayley graphs as classifiers for data mining: The in uence
- of asymmetries, Discrete Math. 309(17)(2009) 5360-5369.
- A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of semigroups, Com-
- ment. Math. Univ. Carolin. 45 (1) (2004) 1-7.
- A.V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.
- A.V. Kelarev and S.J. Quinn, Directed graphs and combinatorial properties of semigroups, J.
- Algebra 251 (1) (2002) 16-26.
- A.V. Kelarev, S.J. Quinn and R. Smoliikova, Power graphs and semigroups of matrices, Bull.
- Austral. Math. Soc. 63 (2) (2001) 341-344.
- A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of groups, Contribu-
- tions to General Algebra 12 (Vienna, 1999), 229-235, Heyn, Klagenfurt, 2000.
- X.L. Ma, H.Q. Wei and Guo Zhong, The cyclic graph of a finite group, Algebra 2013 (2013)
- Article ID 107265, 1-7.
- Z. Mehranian, A. Gholami and A.R. Ashrafi, The Spectra of power graphs of certain finite groups,
- Linear Multilinear Algebra, 65 (5) (2017) 1003-1010.
- J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cambridge, New York-
- Melbourne, 1978.
- G. Sabidussi, Graph Derivatives, Math. Z. 76 (1961) 385-401.
- T. Tamizh Chelvam and M. Sattanathan, Power graph of finite abelian groups, Algebra Discrete
- Math. 16 (1) (2013) 33-41.
- D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle
- River, NJ, 2001.
- B-F. Wu, Y-Y. Lou and C-X. He, Signless Laplacian and normalized Laplacian on the
- H-join operation of graphs, Discrete Math. Algorithm. Appl. 06 (2014) [13 pages] DOI:
- http://dx.doi.org/10.1142/S1793830914500463.
References
P. J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (2011)
-1222.
P.J. Cameron, The power graph of a finite group, II, J. Group Theory 13 (2010) 779-783.
S. Chattopadhyaya and P. Panigrahi, On Laplacian spectrum of power graphs of finite cyclic and
dihedral groups, Linear Multilinear Algebra 63(7) (2015) 1345-1355.
A. Hamzeh and A. R. Ashrafi, The main supergraph of the power graph of a finite group, submitted.
A. Hamzeh and A. R. Ashrafi, Automorphism group of supergraphs of the power graph of a finite
group, European J. Combin., 60 (2017) 82-88.
A. Hamzeh, Spectrum and L-spectrum of the cyclic group, Southeast Asian Bull. Math., accepted.
A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph and its main
supergraph for certain finite groups, submitted.
A. Kelarev, J. Ryan and J. Yearwood, Cayley graphs as classifiers for data mining: The in uence
of asymmetries, Discrete Math. 309(17)(2009) 5360-5369.
A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of semigroups, Com-
ment. Math. Univ. Carolin. 45 (1) (2004) 1-7.
A.V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.
A.V. Kelarev and S.J. Quinn, Directed graphs and combinatorial properties of semigroups, J.
Algebra 251 (1) (2002) 16-26.
A.V. Kelarev, S.J. Quinn and R. Smoliikova, Power graphs and semigroups of matrices, Bull.
Austral. Math. Soc. 63 (2) (2001) 341-344.
A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of groups, Contribu-
tions to General Algebra 12 (Vienna, 1999), 229-235, Heyn, Klagenfurt, 2000.
X.L. Ma, H.Q. Wei and Guo Zhong, The cyclic graph of a finite group, Algebra 2013 (2013)
Article ID 107265, 1-7.
Z. Mehranian, A. Gholami and A.R. Ashrafi, The Spectra of power graphs of certain finite groups,
Linear Multilinear Algebra, 65 (5) (2017) 1003-1010.
J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cambridge, New York-
Melbourne, 1978.
G. Sabidussi, Graph Derivatives, Math. Z. 76 (1961) 385-401.
T. Tamizh Chelvam and M. Sattanathan, Power graph of finite abelian groups, Algebra Discrete
Math. 16 (1) (2013) 33-41.
D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle
River, NJ, 2001.
B-F. Wu, Y-Y. Lou and C-X. He, Signless Laplacian and normalized Laplacian on the
H-join operation of graphs, Discrete Math. Algorithm. Appl. 06 (2014) [13 pages] DOI: