Main Article Content

Abstract

Different competitions of the real world have been designed by the bipolar neutrosophiccompetitions graphs. In this paper, we first introduce the concept of p-competition bipo-lar neutrosophic graphs. We then define generalization of bipolar neutrosophic competitiongraphs called m-step bipolar neutrosophic competition graphs. Further, we present somerelated bipolar neutrosophic graphs, including m-step bipolar neutrosophic neighbourhoodgraphs, bipolar neutrosophic economic competition graphs and m-step bipolar neutrosophiceconomic competition graphs. Finally, we describe an application of m-step bipolar neutro-sophic competition graphs.

Keywords

p-Competition bipolar neutrosophic graphs m-Step bipolar neutrosophic com petition graphs m-Step bipolar neutrosophic economic competition graphs Algorithm.

Article Details

Author Biography

Muhammad Akram, University of the Punjab, Lahore

Department of Mathematics, Professor
How to Cite
Akram, M. (2017). Certain Bipolar Neutrosophic Competition Graphs. Journal of the Indonesian Mathematical Society, 24(1), 1–25. https://doi.org/10.22342/jims.24.1.455.1-25

References

  1. References
  2. M. Akram, Bipolar fuzzy graphs, Information Sciences 181(24) (2011) 5548-5564.
  3. M. Akram, M. Sarwar, Novel multiple criteria decision making methods based on bipolar
  4. neutrosophic sets and bipolar neutrosophic graphs, viXra:1701.0190, 2015.
  5. M. Akram and S. Shahzadi, Neutrosophic soft graphs with application, Journal of Intelligent
  6. & Fuzzy Systems, 32(1)(2017) 841-858.
  7. N.O. Al-Shehrie and M. Akram, Bipolar fuzzy competition graphs, Ars Combinatoria 121
  8. (2015) 385-402.
  9. M. Akram and M. Nasir, Competition graphs in bipolar neutrosophic environment, 2017.
  10. H.H. Cho, S.-R. Kim and Y. Nam, The m-step competition graph of a digraph, Discrete
  11. Applied Mathematics 105 (2000) 115-127.
  12. P. Bhattacharya, Some remark on fuzzy graphs, Pattern Recognition Letters 6 (1987)
  13. -302.
  14. S. Broumi, M. Talea, A. Bakali and F. Smarandache, On bipolar single valued neutrosophic
  15. graphs, New Trends in Neutrosophic Theory and Applications (2016) 203-221.
  16. J.E. Cohen, Interval graphs and food webs: a finding and a problems, Document 17696-
  17. PR, RAND Corporation, Santa Monica, CA (1968).
  18. I. Deli, M. Ali and F. Smarandache, (2015), Bipolar neutrosophic sets and their applications
  19. based on multi-criteria decision making problems, In Advanced Mechatronic Systems
  20. (ICAMechS), International Conference IEEE, 249-254.
  21. R. Dhavaseelan, R. Vikramaprasad and V. Krishnaraj, Certain types of neutrosophic
  22. graphs, International Journal of Mathematics Science and Applications 5(2) (2015) 333-
  23. A. Kauffman, Introduction a la theorie des sousemsembles flous, Masson et cie Paris
  24. (1973).
  25. A. Rosenfeld, Fuzzy graphs, Fuzzy Sets and their Application (L.A. Zadeh, K.S. Fu, M.
  26. Shimura Eds.) Academic press New York (1975) 77-95.
  27. S. Samanta and M. Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs,
  28. Fuzzy Information and Engineering 5 (2013) 191-204.
  29. S. Samanta, M. Akram and M. Pal, m-Step fuzzy competition graphs, Journal of Applied
  30. Mathematics and Computing 47(2015) 461-472.
  31. M. Sarwar and M. Akram, Novel concepts of bipolar fuzzy competition graphs, Journal
  32. of Applied Mathematics and Computing (2016) DOI 10.1007/s12190-016-1021-z.
  33. M. Nasir, S. Siddique and M. Akram, Novel properties of intuitionistic fuzzy competition
  34. graphs, Journal of Uncertain Systems 2(1)(2017) 49-67.
  35. F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Granular
  36. Computing, 2006, IEEE International Conference (2006) 38-42 DOI:10.1109/GRC
  37. F. Smarandache, A geometric interpretation of the neutrosophic set- A generalization of
  38. the intuitionistic fuzzy set, Granular Computing, (GrC), 2011 IEEE International Conference
  39. (2011) 602-606 DOI:10.1109/GRC.2011.6122665.
  40. F. Smarandache, Types of neutrosophic graphs and neutrosophic algebraic structures
  41. together with their applications in technology, Seminar, Universitatea Transilvania din
  42. Brasov, Facultatea de Design de Produs si Mediu, Brasov, Romania 06 June (2015).
  43. H. Wang, F. Smarandache, Y. Zhang and R. Sunderraman, Single valued neutrosophic
  44. sets, Multisapace and Multistructure 4 (2010) 410-413.
  45. S.Y. Wu, The compositions of fuzzy digraphs, Journal of Research in Education Science,
  46. (1986) 603-628.
  47. J. Ye, Single-valued neutrosophic minimum spanning tree and its clustering method, Journal
  48. of Intelligent Systems 23(3)(2014) 311-324.
  49. J. Ye, A multicriteria decision-making method using aggregation operators for simplified
  50. neutrosophic sets, Journal of Intelligent & Fuzzy Systems 26(5) (2014) 2459-2466.
  51. L.A. Zadeh, Fuzzy sets, Information and Control 08 (1965) 338-353.
  52. W.-R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive
  53. modeling and multiagent decision analysis, In: Proceedings of IEEE Conference Fuzzy
  54. Information Processing Society Biannual Conference (1994) 305-309.