ON SET-INDEXED RESIDUAL PARTIAL SUM LIMIT PROCESS OF SPATIAL LINEAR REGRESSION MODELS

Wayan Somayasa

Abstract


In this paper we derive the limit process of the sequence of set-indexedleast-squares residual partial sum processes of observations obtained form a spatiallinear regression model. For the proof of the result we apply the uniform central limittheorem of Alexander and Pyke (1986) and generalize the geometrical approach ofBischo (2002) and Bischo and Somayasa (2009). It is shown that the limit processis a projection of the set-indexed Brownian sheet onto the reproducing kernel Hilbertspace of this process. For that we dene the projection via Choquet integral of theregression function with respect to the set-indexed Brownian sheet.

DOI : http://dx.doi.org/10.22342/jims.17.2.4.73-83


Keywords


Cayley digraph, normal Cayley digraph, automorphism group

Full Text:

Abstract Full Paper


DOI: https://doi.org/10.22342/jims.17.2.4.73-83

Refbacks

  • There are currently no refbacks.



Journal of the Indonesian Mathematical Society
Mathematics Department, Universitas Gadjah Mada
Senolowo, Sinduadi, Mlati, Sleman Regency, Special Region of Yogyakarta 55281, Telp. (0274) 552243
Email: jims.indoms@gmail.com


p-ISSN: 2086-8952 | e-ISSN: 2460-0245


Journal of the Indonesian Mathematical Society is licensed under a Creative Commons Attribution 4.0 International License

web statistics
View My Stats