Main Article Content


Using the Hasse diagrams of concept lattices, we investigate the
relations between matroids and geometric contexts, followed by
judging a mathematical construction to be a matroid. We provide an
idea to find out the dual of a matroid from the ways of concept
lattice drawing. In addition, we utilize the Hasse diagrams of
concept lattices to discuss the minors of matroids, direct sum of
matroids and the connectivity of a matroid. All the consequences
demonstrate that the theory of concept lattice drawing can be used
into matroids. This generalizes the applied fields of concept



matroid concept lattice Hasse diagram geometric

Article Details

Author Biography

hua mao, hebei university

department of mathematics
How to Cite
mao, hua. (2017). SOME PROPERTIES OF MATROIDS OBTAINED FROM CONCEPT LATTICE APPROACHES. Journal of the Indonesian Mathematical Society, 22(2), 183–190.


  1. bibitem{1} Faigle, U. and Fujishige, S., ``A general model for matroids
  2. and the greedy algorithm", {em Math. Prog., ser. A}
  3. textbf{119}(2)(2009), 353 - 369.
  4. bibitem{2}Freese, R., ``Automated lattice
  5. drawing",$sim$ralph
  6. bibitem{3} Ganter, B., Stumme, G. and Wille, R., (eds.), {it Formal Concept
  7. Analysis: Foundations and Applications}, Springer-Verlag Berlin,
  8. Heildelberg, 2005.
  9. bibitem{4} Ganter, B. and Wille, R., {it Formal Concept
  10. Analysis: Mathematical Foundations}, Springer-Verlag Berlin,
  11. Heidelberg, 1999.
  12. bibitem{5} Gr"azter, G., {it Lattice Theory}, 2nd., Birkh"auser Verlag, Basel, 1998.
  13. bibitem{6} Gr"azter, G., {it Lattice Theory: Foundation},
  14. Springer Basel AG, Berlin, 2011.
  15. bibitem{7} 9th. International Conference on Formal Concept
  16. Analysis, Nicosia, Cyprus, May 2-6, 2011.
  17. bibitem{8} Lai, H.J., {it Matroid Theory}, Hingher Education
  18. Press, Beijing, 2002.(in Chinese)
  19. bibitem{9}Mao, H., ``An approach to access to a concept lattice
  20. via the idea of lattice theory", {em Univ. Politehnica of Bucharest
  21. Sci. Bull., series A, Math. and Phys.} textbf{73}(2)(2011), 37 -
  22. bibitem{10} Mao, H., ``Complete atomistic lattices are classification
  23. lattices", Algeb. Univ. textbf{68}(3-4)(2012), 293 - 294.
  24. bibitem{11} Mao, H., ``On closure axioms for a matroid using Galois
  25. connections", {em Math. Commu.} textbf{14}(2)(2009), 425 - 432.
  26. bibitem{12} Mao, H., ``On lattice-theoretical construction of
  27. matroids", {em Anna. of the Alexandru loan Cuza University-Math.}
  28. textbf{59}(1)(2013), 201 - 208.
  29. bibitem{13} Owais, S., Gajdov s, P. and Sn' av sel, V., ``Usage of
  30. genetic algorithm for lattice drawing", Radim Bv elohl'avek,
  31. V'aclav Sn'av sel(eds.): {it CLA 2005}, 82-91.
  32. bibitem{14} Oxley, J., {it Matroid Theory}, 2nd. ed., Oxford University
  33. Press, New York, 2011.
  34. bibitem{15}Stumme, G. and Wille, R., ``A geometrical heuristic
  35. for drawing concept lattices", {em Lect. Note. in Compu.
  36. Sci.} textbf{894}(1995), 452 - 459.
  37. bibitem{16} Welsh, D.J.A.,
  38. {it Matroid Theory}, Academic Press, London, 1976.