SOME PROPERTIES OF MATROIDS OBTAINED FROM CONCEPT LATTICE APPROACHES

hua mao

Abstract


Using the Hasse diagrams of concept lattices, we investigate the
relations between matroids and geometric contexts, followed by
judging a mathematical construction to be a matroid. We provide an
idea to find out the dual of a matroid from the ways of concept
lattice drawing. In addition, we utilize the Hasse diagrams of
concept lattices to discuss the minors of matroids, direct sum of
matroids and the connectivity of a matroid. All the consequences
demonstrate that the theory of concept lattice drawing can be used
into matroids. This generalizes the applied fields of concept
lattices.

DOI : http://dx.doi.org/10.22342/jims.22.2.267.183-190


Keywords


matroid; concept lattice; Hasse diagram; geometric

Full Text:

PDF

References


bibitem{1} Faigle, U. and Fujishige, S., ``A general model for matroids

and the greedy algorithm", {em Math. Prog., ser. A}

textbf{119}(2)(2009), 353 - 369.

bibitem{2}Freese, R., ``Automated lattice

drawing", http://www.math.hawaii.edu/$sim$ralph

bibitem{3} Ganter, B., Stumme, G. and Wille, R., (eds.), {it Formal Concept

Analysis: Foundations and Applications}, Springer-Verlag Berlin,

Heildelberg, 2005.

bibitem{4} Ganter, B. and Wille, R., {it Formal Concept

Analysis: Mathematical Foundations}, Springer-Verlag Berlin,

Heidelberg, 1999.

bibitem{5} Gr"azter, G., {it Lattice Theory}, 2nd., Birkh"auser Verlag, Basel, 1998.

bibitem{6} Gr"azter, G., {it Lattice Theory: Foundation},

Springer Basel AG, Berlin, 2011.

bibitem{7} 9th. International Conference on Formal Concept

Analysis, Nicosia, Cyprus, May 2-6, 2011.

bibitem{8} Lai, H.J., {it Matroid Theory}, Hingher Education

Press, Beijing, 2002.(in Chinese)

bibitem{9}Mao, H., ``An approach to access to a concept lattice

via the idea of lattice theory", {em Univ. Politehnica of Bucharest

Sci. Bull., series A, Math. and Phys.} textbf{73}(2)(2011), 37 -

bibitem{10} Mao, H., ``Complete atomistic lattices are classification

lattices", Algeb. Univ. textbf{68}(3-4)(2012), 293 - 294.

bibitem{11} Mao, H., ``On closure axioms for a matroid using Galois

connections", {em Math. Commu.} textbf{14}(2)(2009), 425 - 432.

bibitem{12} Mao, H., ``On lattice-theoretical construction of

matroids", {em Anna. of the Alexandru loan Cuza University-Math.}

textbf{59}(1)(2013), 201 - 208.

bibitem{13} Owais, S., Gajdov s, P. and Sn' av sel, V., ``Usage of

genetic algorithm for lattice drawing", Radim Bv elohl'avek,

V'aclav Sn'av sel(eds.): {it CLA 2005}, 82-91.

bibitem{14} Oxley, J., {it Matroid Theory}, 2nd. ed., Oxford University

Press, New York, 2011.

bibitem{15}Stumme, G. and Wille, R., ``A geometrical heuristic

for drawing concept lattices", {em Lect. Note. in Compu.

Sci.} textbf{894}(1995), 452 - 459.

bibitem{16} Welsh, D.J.A.,

{it Matroid Theory}, Academic Press, London, 1976.




DOI: https://doi.org/10.22342/jims.22.2.267.183-190

Refbacks

  • There are currently no refbacks.



Journal of the Indonesian Mathematical Society
Mathematics Department, Universitas Gadjah Mada
Senolowo, Sinduadi, Mlati, Sleman Regency, Special Region of Yogyakarta 55281, Telp. (0274) 552243
Email: jims.indoms@gmail.com


p-ISSN: 2086-8952 | e-ISSN: 2460-0245


Journal of the Indonesian Mathematical Society is licensed under a Creative Commons Attribution 4.0 International License

web statistics
View My Stats