Utilizing Trajectory Matrices and Singular Value Decomposition (SVD) for Multivariate Transformation in Time Series Analysis

Dina Prariesa (1) , Udjianna Sekteria Pasaribu (2) , Utriweni Mukhaiyar (3)
(1) Doctoral Program in Mathematics, Institut Teknologi Bandung, Indonesia,
(2) Statistics Research Division, Institut Teknologi Bandung, Indonesia,
(3) Statistics Research Division, Institut Teknologi Bandung, Indonesia

Abstract

The trajectory matrix transforms univariate time series data into multivariate form using the structural properties of the Hankel Matrix (HM). Research on data matrices within Time Series Analysis (TSA) remains limited. This study examines AR models with stationary properties and applies Singular Value Decomposition (SVD) to HM in the Box-Jenkins framework. It focuses on HM properties, matrix dimension considerations in SVD, and order identification. Numerical simulations of the AR(1) and AR(2) models reveal that the PACF and SVD scree plots exhibit similar patterns. This indicates that applying SVD to HM could serve as an alternative to PACF for AR order selection. The findings highlight potential future research directions by refining, adapting, and generalizing previous studies to advance the TSA methodology.

Full text article

Generated from XML file

References

C. E. Montagnon, “Forecasting by splitting a time series using singular value decomposition then using both ARMA and a Fokker-Planck equation,” Physica A: Statistical Mechanics and its Applications, vol. 567, p. 125708, 2021. https://www.doi.org/10.1016/j.physa.2021.125708.

J. Gillard and K. Usevich, “Hankel low-rank approximation and completion in time series analysis and forecasting: a brief review,” Statistics and Its Interface, vol. 6, no. 1, pp. 123–145, 2022. https://doi.org/10.48550/arXiv.2206.05103.

R. A. Horn and C. R. Johnson, Matrix analysis. New York: Cambridge University Press, 2nd ed., 2013.

N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of time series structure: SSA and related techniques. London: Chapman & Hall/CRC, 2001.

N. Golyandina and A. Zhigljavsky, Singular spectrum analysis for time series. Springer, 2013.

N. Golyandina, “Particularities and commonalities of singular spectrum analysis as a method of time series analysis and signal processing,” WIREs Computational Statistics, vol. 12, no. 3, p. e1483, 2020. https://doi.org/10.1002/wics.1487.

N. Golyandina and A. Korobeynikov, “Basic singular spectrum analysis and forecasting with R,” Computational Statistics and Data Analysis, vol. 64, pp. 92–107, 2013. https://doi.org/10.1016/j.csda.2013.04.009.

N. Golyandina, A. Korobeynikov, and A. Zhigljavsky, Singular spectrum analysis with R. Springer, 2018. https://doi.org/10.1007/978-3-662-57380-8.

C. Deng, Time series decomposition using singular spectrum analysis. Ph.d. dissertation, East Tennessee State University, 2014. https://dc.etsu.edu/etd/2352.

S. Wadekar, A. Mahalkari, A. Ali, and A. Gupta, “A review on singular spectrum analysis,” in Proceedings of the IEEE International Conference on Current Development in Engineering and Technology (CCET), 2022. https://doi.org/10.1109/CCET56606.2022.10080082.

R. Kazemi and P. Rodrigues, “Robust singular spectrum analysis: comparison between classical and robust approaches for model fit and forecasting,” Computational Statistics, vol. 38, no. 1, pp. 87–110, 2023. https://doi.org/10.1007/s00180-022-01322-4.

K. E. Lestari, U. S. Pasaribu, and S. W. Indratno, “Graphical depiction of three-way association in contingency table using higher-order singular value decomposition Tucker3,” Journal of Physics: Conference Series, vol. 1280, p. 022035, 2019. .

K. E. Lestari, Structure of contingency table using Cardano and Cardano-Ferrari formulas on correspondence analysis. Ph.d. dissertation, Institut Teknologi Bandung, 2021.

S. Banerjee and A. Roy, Linear algebra and matrix analysis for statistics. CRC Press Taylor and Francis Group, 2014.

G. M. Djakou and X. Jiang, “GDP modelling and forecasting using ARIMA: an empirical study for cameroon,” International Journal of Science and Business, vol. 22, pp. 41–52, 2023. https://ideas.repec.org/a/aif/journl/v22y2023i1p41-52.html.

F. M. Razali and N. F. Haron, “Forecasting data using box-jenkins procedure: a case study for unemployed people in malaysia,” Gading Journal of Science and Technology, vol. 6, pp. 31–39, 2023. https://ir.uitm.edu.my/id/eprint/114699/.

T. A. Ojurongbe, T. A. Bello, N. O. Adeboye, H. A. Afolabi, O. O. Aduroja, and K. A. Bashiru, “Time series analysis on the prevalence of malaria in osogbo, nigeria,” Adeleke University Journal of Engineering and Technology (AUTJET), vol. 6, pp. 85–95, 2023. http://aujet.adelekeuniversity.edu.ng/index.php/aujet/article/view/289.

T. Makoni, G. Mazuruse, and B. Nyagadza, “International tourist arrivals modelling and forecasting: a case of zimbabwe,” Sustainable Technology and Entrepreneurship, vol. 2, no. 1, p. 100027, 2023. https://www.doi.org/10.1016/j.stae.2022.100027.

K. A. Kumar, P. Pinto, C. Spulbar, R. Birau, I. T. Hawaldar, S. Vishal, and I. C. Barbacioru, “Arima model to forecast the rsa-1 rubber price in india: a case study for textile industry,” Industria Textila, vol. 74, 2023. 1https://www.doi.org/10.35530/IT.074.02.2022132.

G. Bezabih, M. Wale, N. Satheesh, S. W. Fanta, and M. Atlabachew, “Forecasting cereal crops production using time series analysis in ethiopia,” Journal of the Saudi Society of Agricultural Sciences, vol. 22, no. 8, pp. 546–559, 2023. https://www.doi.org/10.1016/j.jssas.2023.07.001.

S. G. Makridakis, S. C. Wheelwright, and V. E. McGee, Forecasting: Methods and Applications. New York: Wiley, 2nd ed., 1983.

G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day Inc, 1976.

G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control. John Wiley and Sons, Inc, 5th ed., 2016.

W. W. S. Wei, Time series analysis: univariate and multivariate methods. Pearson-Addison Wesley, 2nd ed., 2006.

J. D. Cryer and K. S. Chan, Time series analysis with applications in R. Springer, 2nd ed., 2008. https://link.springer.com/chapter/10.1007/978-0-387-75959-3_15.

W. Palma, Time series analysis. John Wiley and Sons Inc, 2016.

M. S. Paolella, Linear models and time series analysis: regression, ANOVA, ARMA and GARCH. John Wiley and Sons Inc, 2019.

F. Kamalov, F. Thabtah, and I. Gurrib, “Autocorrelation for time series with linear trend,” in International Conference on Innovation and Intelligence for Informatics, Computing and Technology (3ICT), 2021. https://doi.org/10.1109/3ICT53449.2021.9581809.

X. Tan, Penalized estimation of autocorrelation. Ph.d. dissertation, Clemson University, 2022.

C. H. Weib, B. Aleksandrov, M. Faymonville, and C. Jentsch, “Partial autocorrelation diagnostics for count time series,” Entropy, vol. 25, 2023. https://doi.org/10.3390/e25010105.

P. Kwizera, Matrix singular value decomposition. Ph.d. dissertation, University of North Florida, 2010.

P. Frame and A. Towne, “Space-time POD and the hankel matrix,” PLoS ONE, vol. 18, no. 7, p. e0286234, 2023. https://doi.org/10.1371/journal.pone.0289637.

Authors

Dina Prariesa
Udjianna Sekteria Pasaribu
udjianna@itb.ac.id (Primary Contact)
Utriweni Mukhaiyar
Prariesa, D., Pasaribu, U. S., & Mukhaiyar, U. (2026). Utilizing Trajectory Matrices and Singular Value Decomposition (SVD) for Multivariate Transformation in Time Series Analysis. Journal of the Indonesian Mathematical Society, 32(1), 1966. https://doi.org/10.22342/jims.v32i1.1966

Article Details

Most read articles by the same author(s)