On Spectrum and Energy of Non-Commuting Graph for Group U_{6n}

Mamika Ujianita Romdhini (1), Athirah Nawawi (2), Faisal Al-Sharqi (3), Ashraf Al-Quran (4)
(1) Department of Mathematics, University of Mataram, Indonesia,
(2) Department of Mathematics and Statistics, Universiti Putra Malaysia, Malaysia,
(3) Department of Mathematics, University of Anbar, Iraq,
(4) Basic Sciences Department, King Faisal University, Saudi Arabia

Abstract

Let $G$ be a group and $Z(G)$ be the center of $G$. In this paper, we discuss a specific type of graph known as the non-commuting graph, denoted by $\Gamma_G$, whose vertex set contains all group elements excluding central elements, $G\backslash Z(G)$. This graph has to satisfy a condition in which $v_p,v_q \in G\backslash Z(G)$ where $v_p \neq v_q$, are adjacent whenever $v_p v_q\neq v_q v_p$. This paper presents the spectrum and energy of the non-commuting graph for $U_{6n}$, $\Gamma_{U_{6n}}$ associated with the adjacency, degree sum, and degree sum adjacency matrices and their energy relationship.

Full text article

Generated from XML file

References

B. H. Neumann, “Problem of paul erdos on groups,” Journal of the Australian Mathematical Society, vol. 21, no. 4, pp. 467–472, 1976. https://doi.org/10.1017/S1446788700019303.

A. Abdollahi, S. Akbari, and H. R. Maimani, “Non-commuting graph of a group,” Journal of Algebra, vol. 298, no. 2, pp. 468–492, 2006. https://doi.org/10.1016/j.jalgebra.2006.02.015.

I. Gutman, “The energy of graph,” Ber. Math. Statist. Sekt. Forschungszenturm Graz., vol. 103, pp. 1–22, 1978.

H. S. Ramane, K. Ashoka, and D. Patil, “On the seidel laplacian and seidel signless Laplacian polynomials of graphs,” Kyungpook Mathematical Journal, vol. 61, pp. 155–168, 2021. https://doi.org/10.5666/KMJ.2021.61.1.155.

X. Shi, S. Kosari, A. A. Talebi, S. H. Sadati, and H. Rashmanlou, “Investigation of the main energies of picture fuzzy graph and its applications,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, p. 31, 2022. https://link.springer.com/article/10.1007/s44196-022-00086-5.

M. U. Romdhini, F. Al-Sharqi, A. Nawawi, A. Al-Quran, and H. Rashmanlou, “Signless laplacian energy of interval-valued fuzzy graph and its applications,” Sains Malaysiana, vol. 52, no. 7, pp. 2127–2138, 2023. https://doi.org/10.17576/jsm-2023-5207-18.

S. K. Vaidya and K. M. Popat, “Some new results on seidel equienergetic graphs,” Kyungpook Mathematical Journal, vol. 59, pp. 335–340, 2019. https://doi.org/10.5666/KMJ.2019.59.2.335.

H. S. Ramane, D. S. Revankar, and J. B. Patil, “Bounds for the degree sum eigenvalues and degree sum energy of a graph,” International Journal of Pure and Applied Mathematics, vol. 6, no. 2, pp. 161–167, 2013. https://www.ripublication.com/ijpams/ijpamsv6n2_08.pdf.

S. R. Jog and R. Kotambari, “Degree sum energy of some graphs,” Annals of Pure and Applied Mathematics, vol. 11, no. 1, pp. 17–27, 2016. https://www.researchmathsci.org/apamart/apam-v11n1-3.pdf.

S. M. Hosamani and H. S. Ramane, “On degree sum energy of a graph,” European Journal of Pure Applied Mathematics, vol. 9, no. 3, pp. 340–345, 2016.

S. S. Shinde, H. S. Ramane, S. B. Gudimani, and N. Swamy, “Degree sum adjacency polynomial of standard graphs and graph operations,” Electronic Journal of Graph Theory and Applications, vol. 10, no. 1, pp. 15–32, 2022. http://dx.doi.org/10.5614/ejgta.2022.10.1.2.

F. Al-Sharqi, M. U. Romdhini, and A. Al-Quran, “Group decision-making based on aggregation operator and score function of q-neutrosophic soft matrix,” Journal of Intelligent and Fuzzy Systems, vol. 45, pp. 1–17, 2023. https://doi.org/10.3233/JIFS-224552.

M. U. Romdhini, A. Nawawi, F. Al-Sharqi, A. Al-Quran, , and S. R. Kamali, “Wiener-hosoya energy of non-commuting graph for dihedral groups,” Asia Pacific Journal of Mathematics, vol. 11, no. 9, pp. 1–9, 2024. https://doi.org/10.28924/APJM/11-9.

M. U. Romdhini, A. Nawawi, F. Al-Sharqi, and A. Al-Quran, “Closeness energy of non-commuting graph for dihedral groups,” European Journal of Pure and Applied Mathematics, vol. 17, no. 1, pp. 212–221, 2024. https://doi.org/10.29020/nybg.ejpam.v17i1.5020.

M. U. Romdhini, A. Nawawi, and B. N. Syechah, “Seidel laplacian and seidel signless laplacian energies of commuting graph for dihedral groups,” Malaysian Journal of Fundamental and Applied Sciences, vol. 20, no. 3, p. 701–713, 2024. https://doi.org/10.11113/mjfas.v20n3.3465.

M. Rather, B A Imran, Z. Raza, and F. B. Farooq, “Spectral properties of sombor matrix of threshold graphs,” RAIRO-Operations Research, vol. 58, no. 4, pp. 2845–2864, 2024. https://doi.org/10.1051/ro/2024111.

L. Zheng and B. Zhou, “Spectra of closeness laplacian and closeness signless laplacian of graphs,” RAIRO-Operations Research, vol. 56, no. 5, pp. 3525–3543, 2022. https://doi.org/10.1051/ro/2022161.

R. A. Horn and C. A. Johnson, Matrix analysis. Cambridge University Press, 1985.

X. Li, Y. Shi, and I. Gutman, Graph Energy. Springer, 2012. https://link.springer.com/book/10.1007/978-1-4614-4220-2.

H. S. Ramane and S. S. Shinde, “Degree exponent polynomial of graphs obtained by some graph operations,” Electronic Notes in Discrete Mathematics, vol. 63, pp. 161–168, 2017. https://doi.org/10.1016/j.endm.2017.11.010.

F. R. Gantmacher, The Theory of Matrices. Chelsea Publishing Company, 1959.

G. James and M. Liebeck, Representations and characters of groups. Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511814532.

M. Mirzargar and A. R. Ashrafi, “Some distance-based topological indices of a non-commuting graph,” Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, pp. 515–526, 2012. https://dergipark.org.tr/en/pub/hujms/issue/7753/101338.

S. Khasraw, C. H. Jaf, N. H. Sarmin, and I. Gambo, “On the non-commuting graph of the group u6n,” Malaysian Journal of Mathematical Sciences, vol. 18, no. 3, pp. 491–500, 2024. https://doi.org/10.47836/MJMS.18.3.02.

S. Pirzada and I. Gutman, “Energy of a graph is never an odd integer,” Bulletin of Kerala Mathematics Association, vol. 1, pp. 129–132, 2004.

S. Pirzada and I. Gutman, “Energy of a graph is never the square root of an odd integer,” Applicable Analysis and Discrete Mathematics, vol. 2, no. 1, pp. 118–121, 2008. https://pefmath.etf.rs/vol2num1/AADM-Vol2-No1-118-121.pdf.

Authors

Mamika Ujianita Romdhini
mamika@unram.ac.id (Primary Contact)
Athirah Nawawi
Faisal Al-Sharqi
Ashraf Al-Quran
Romdhini, M. U., Nawawi, A., Al-Sharqi, F., & Al-Quran, A. (2025). On Spectrum and Energy of Non-Commuting Graph for Group U_{6n}. Journal of the Indonesian Mathematical Society, 31(4), 1928. https://doi.org/10.22342/jims.v31i4.1928

Article Details

Crossref
Scopus
Google Scholar
Europe PMC