Nonlocal-Adjacency Metric Dimension of Graphs

Rinurwati Rinurwati (1), Falda Isna Andini (2), Syaima Shafa Az Zahra (3), Soleha Soleha (4), Dian Winda Setyawati (5), Komar Baihaqi (6), Iis Herisman (7)
(1) Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia,
(2) Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia,
(3) Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia,
(4) Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia,
(5) Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia,
(6) Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia,
(7) Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia

Abstract

Let $ T = \{t_1, t_2, \ldots, t_k\} \subseteq V(G)$ be an ordered subset of the vertex set of a graph G, and let $u \in V(G)$ be a vertex in G. The adjacency metric representation of vertex u with respect to the set T is the k-vector $r_A(u \mid T ) = (d_A(u, t_1), d_A(u, t_2), \ldots, d_A(u, t_k))$. The set T is called a nonlocal-adjacency metric resolving set of the graph G if $r_A(u \mid T ) \ne r_A(w \mid T )$ for every pair of vertices $u, v \in G$ with u not adjacent to v. The minimum cardinality of a nonlocal-adjacency metric resolving set of G is called the nonlocal-adjacency metric dimension of G, denoted by $dim_{Anl}(G)$. In this paper, we present graphs obtained from the degree corona product of two graphs. The degree corona product of graphs G and H, denoted by $G \odot_{\deg} H$, is the graph constructed by taking a graph G and $\sum_{i=1}^{|V(G)|} \deg(v_i)$ copies $H_{ij}$ of graph H, and then connecting every vertex $v_i \in V(G)$ to all vertices in $H_{ij}$ for every $j \in \{1, 2, \ldots, \deg(v_i)\}$ and $i \in \{1, 2, \ldots, |V(G)|\}$. Furthermore, we determine and analyze the nonlocal-adjacency metric dimension of basic graphs $G_b \in \{P_n, C_n\}$, centered graphs $G_c \in \{K_n, S_n, K_1 + P_n, K_1 + C_n, K_m + \overline{K_n}\}$, and the degree corona product graphs $G_c \odot_{\deg} K_1$. In addition, we provide upper bounds, characterizations of the nonlocal-adjacency metric dimension of graphs, and examples of applications of this concept.

Full text article

Generated from XML file

References

F. Harary and F. Buckley, Distance In Graphs. Addison-Wesley Publishing Company, 1990.

S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in graphs,” Discrete Applied Mathematics, vol. 70, no. 3, pp. 217–229, 1996. https://doi.org/10.1016/0166-218X(95)00106-2.

A. Sebo and E. Tannier, “On metric generators of graphs,” Mathematics of Operations Research, vol. 29, no. 2, pp. 383–393, 2004. https://www.jstor.org/stable/30035689.

R. Frucht and F. Harary, “On the corona of two graphs,” Periodica Mathematica Hungarica, vol. 1, no. 3, pp. 197–200, 1970. https://eudml.org/doc/136091.

Y. Hou and W.-C. Shiu, “The spectrum of the edge corona of two graphs,” The Electronic Journal of Linear Algebra, vol. 20, pp. 586–594, 2010. https://scispace.com/pdf/the-spectrum-of-the-edge-corona-of-two-graphs-1re17zlkos.pdf.

H. Iswadi, E. T. Baskoro, and R. Simanjuntak, “On the metric dimension of corona product of graphs,” Far East Journal of Mathematical Sciences (FJMS), vol. 52, no. 2, pp. 155–170, 2011. https://www.pphmj.com/abstract/5882.htm.

I. G. Yero, D. Kuziak, and J. A. Rodr´ıguez-Vel´azquez, “On the metric dimension of corona product graphs,” Computers & Mathematics with Applications, vol. 61, no. 9, pp. 2793–2798, 2011. https://doi.org/10.1016/j.camwa.2011.03.046.

I. Gopalapillai, “The spectrum of neighborhood corona of graphs,” Kragujevac Journal of Mathematics, vol. 35, no. 37, pp. 493–500, 2011. https://imi.pmf.kg.ac.rs/kjm/pub/13249580563258_kjom35__3__-13.pdf.

Rinurwati, H. Suprajitno, and Slamin, “On metric dimension of edge-corona graphs,” Far East Journal of Mathematical Sciences, vol. 102, no. 5, pp. 965–978, 2017. https://www.pphmj.com/abstract/11066.htm.

Rinurwati, H. Suprajitno, and Slamin, “On (local) metric dimension of graphs with m-pendant points,” IOP Publishing, vol. 855, no. 1, p. 012035, 2017. https://iopscience.iop.org/article/10.1088/1742-6596/855/1/012035.

R. E. Nabila and Rinurwati, “Metric and edge-metric dimensions of bobble-neighbourhood-corona graphs,” in Journal of Physics: Conference Series, vol. 1836, p. 012010, IOP Publishing, 2021. https://iopscience.iop.org/article/10.1088/1742-6596/1836/1/012010.

S. Klavzar and D. Kuziak, “Nonlocal metric dimension of graphs,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 46, no. 2, p. 66, 2023. https://link.springer.com/article/10.1007/s40840-022-01459-x.

Rinurwati, D. W. Setyawati, Soleha, I. Herisman, K. Baihaqi, Sadjidon, and T. I. Haryadi, “Nonlocal edge metric dimension on corona multiproduct graphs,” in Springer Proceeding in Mathematics and Statistics, 2024. https://link.springer.com/chapter/10.1007/978-981-97-2136-8_25.

M. Jannesari and B. Omoomi, “The metric dimension of the lexicographic product of graphs,” Discrete Mathematics, vol. 312, no. 22, pp. 3349–3356, 2012. https://www.sciencedirect.com/science/article/pii/S0012365X12003317.

Rinurwati, H. Suprajitno, and Slamin, “On local adjacency metric dimension of some wheel related graphs with pendant points,” AIP Publishing, vol. 1867, no. 1, 2017. https://pubs.aip.org/aip/acp/article/1867/1/020065/972791/On-local-adjacency-metric-dimension-of-some-wheel.

G. Chartrand, L. Lesniak, and P. Zhang, Graphs & Digraphs. Chapman & Hall/CRC, 6th ed., 2016. https://doi.org/10.1201/b19731.

G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, “Resolvability in graphs and the metric dimension of a graph,” Discrete Applied Mathematics, vol. 105, no. 1–3, pp. 99–113, 2000. https://doi.org/10.1016/S0166-218X(00)00198-0.

B. Shanmukha, B. Sooryanarayana, and K. Harinath, “Metric dimension of wheel,” Far East Journal of Applied Mathematics, vol. 8, no. 3, pp. 217–229, 2002. https://doi.org/10.1016/j.ajmsc.2019.04.002.

J. Rodriguez-Velazquez and H. Fernau, “On the (adjacency) metric dimension of corona and strong product graphs and their local variants,” 2013. https://doi.org/10.1016/j.dam.2017.11.019.

Authors

Rinurwati Rinurwati
rinur@matematika.its.ac.id (Primary Contact)
Falda Isna Andini
Syaima Shafa Az Zahra
Soleha Soleha
Dian Winda Setyawati
Komar Baihaqi
Iis Herisman
Rinurwati, R., Andini, F. I., Zahra, S. S. A., Soleha, S., Setyawati, D. W., Baihaqi, K., & Herisman, I. (2026). Nonlocal-Adjacency Metric Dimension of Graphs. Journal of the Indonesian Mathematical Society, 32(1), 1842. https://doi.org/10.22342/jims.v32i1.1842

Article Details

Crossref
Scopus
Google Scholar
Europe PMC