On Basic Ideal Generated by Vertices in Cycles without Exits in Leavitt Path Algebras

Khurul Wardati (1) , Aulia Khifah Futhona (2)
(1) Department of Mathematics, Universitas Islam Negeri Sunan Kalijaga, Indonesia,
(2) Department of Mathematics, Universitas Islam Negeri Sunan Kalijaga, Indonesia

Abstract

Vertices located on cycles without exits have a role in constructing ideals in the Leavitt path algebras over a commutative unital ring. One key reason is that the set of such vertices is hereditary. In addition, an ideal of the commutative unital ring can be combined with these vertices to form an ideal in the Leavitt path algebra. This article focuses on creating a (basic) ideal in the Leavitt path algebras, which is generated by vertices on cycles without exits.

Full text article

Generated from XML file

References

I. Assem, A. Skowronski, and D. Simson, Elements of the Representation Theory of Associative Algebras: Techniques of Representation Theory. London Mathematical Society Student Texts, Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511619212.

M. Siles Molina, “Algebras of quotients of path algebras,” Journal of Algebra, vol. 319, no. 12, pp. 5265–5278, 2008. https://doi.org/10.1016/j.jalgebra.2007.09.017.

G. Pino, D. Barquero, C. Mart´ın Gonz´alez, and M. Siles Molina, “Socle theory for leavitt path algebras of arbitrary graphs,” Revista Matematica Iberoamericana, vol. 26, 03 2008. https://doi.org/10.4171/RMI/611.

K. Wardati, I. Wijayanti, and S. Wahyuni, “On primeness of path algebras over a unital commutative ring,” JP Journal of Algebra, Number Theory and Applications, vol. 34, pp. 121–138, 09 2014. https://www.researchgate.net/publication/282916530_On_primeness_of_path_algebras_over_a_unital_commutative_ring.

G. Abrams and G. Aranda Pino, “The leavitt path algebra of a graph,” Journal of Algebra, vol. 293, no. 2, pp. 319–334, 2005. https://doi.org/10.1016/j.jalgebra.2005.07.028.

G. Abrams, G. Aranda Pino, and M. Siles Molina, “Finite-dimensional leavitt path algebras,” Journal of Pure and Applied Algebra, vol. 209, no. 3, pp. 753–762, 2007. https://doi.org/10.1016/j.jpaa.2006.07.013.

G. Abrams, G. Pino, F. Perera, and M. Siles Molina, “Chain conditions for leavitt path algebras,” Forum Mathematicum, vol. 22, 01 2010. https://doi.org/10.1515/FORUM.2010. 005.

G. A. Pino, E. Pardo, and M. S. Molina, “Prime spectrum and primitive leavitt path algebras,” Indiana University Mathematics Journal, vol. 58, no. 2, pp. 869–890, 2009. http://www.jstor.org/stable/24903218.

M. Tomforde, “Leavitt path algebras with coefficients in a commutative ring,” Journal of Pure and Applied Algebra, vol. 215, no. 4, pp. 471–484, 2011. https://doi.org/10.1016/j.jpaa.2010.04.031.

H. Larki, “Ideal structure of leavitt path algebras with coefficients in a unital commutative ring,” 2012. https://arxiv.org/abs/1202.5478.

K. Wardati, I. E. Wijayanti, and S. Wahyuni, “On free ideals in free algebras over a commutative ring,” Journal of the Indonesian Mathematical Society, vol. 21, p. 59–69, Apr. 2015. https://doi.org/10.22342/jims.21.1.170.59-69.

K. Wardati, “Kesemiprimaan aljabar lintasan dan aljabar lintasan leavit,” Jurnal Fourier, vol. 6, p. 9–20, Apr. 2017. https://doi.org/10.14421/fourier.2017.61.9-20.

K. Wardati, “The socle of leavitt path algebras over a semiprime ring,” Algebra and Discrete Mathematics, vol. 34, p. 152 – 168, 2022. http://dx.doi.org/10.12958/adm1850.

G. Aranda Pino, D. Mart´ın Barquero, C. Mart´ın Gonz´alez, and M. Siles Molina, “The socle of a leavitt path algebra,” Journal of Pure and Applied Algebra, vol. 212, no. 3, pp. 500–509, 2008. https://doi.org/10.1016/j.jpaa.2007.06.001.

S. ES˙IN and M. KANUN˙I ER, “Existence of maximal ideals in leavitt path algebras,” TURKISH JOURNAL OF MATHEMATICS, vol. 42, p. 2081–2090, Sept. 2018. http://dx.doi.org/10.3906/mat-1704-116.

P. Kanwar, M. Khatkar, and R. K. Sharma, “On leavitt path algebras over commutative rings,” International Electronic Journal of Algebra, vol. 26, no. 26, p. 191–203, 2019. https://doi.org/10.24330/ieja.587053.

G. Abrams, P. Ara, and M. Siles Molina, Leavitt Path Algebras. 01 2017. https://doi.org/10.1007/978-1-4471-7344-1.

G. Aranda Pino, J. Brox, and M. Siles Molina, “Cycles in leavitt path algebras by means of idempotents,” Forum Mathematicum, vol. 27, no. 1, pp. 601–633, 2015. https://doi.org/10.1515/FORUM-2011-0134.

Authors

Khurul Wardati
khurul.wardati@uin-suka.ac.id (Primary Contact)
Aulia Khifah Futhona
Wardati, K., & Futhona, A. K. (2025). On Basic Ideal Generated by Vertices in Cycles without Exits in Leavitt Path Algebras. Journal of the Indonesian Mathematical Society, 31(3), 1757. https://doi.org/10.22342/jims.v31i3.1757

Article Details

Most read articles by the same author(s)