Some Results on Inclusive Distance Antimagic Labeling of Graphs
Abstract
Let $G=(V,E)$ be a graph of order $n$. A bijection $f:V(G)\rightarrow \{1,2,\cdots,n\}$ is called inclusive distance antimagic labeling if $w(u)\ne w(v)$ for any two distinct vertices $u,v\in V(G)$, where $w(v) = \displaystyle \sum_{x\in N[v]} f(x)$. We start our discussion with the connection between distance magic labeling and inclusive distance antimagic labeling. Then, we investigate the existence of an inclusive distance antimagic labeling for circulant graphs, disjoint union graphs, and join graphs.
Full text article
References
V. Vilfred, Sigma Labelled Graphs and Circulant Graphs. University of Kerala, India: Ph.D Thesis, 1994.
M. Miller, C. Rodger, and R. Simanjuntak, “Distance magic labelings of graphs,” Australasian Journal of Combinatorics, vol. 28, 2003. https://ajc.maths.uq.edu.au/pdf/28/ajc_v28_p305.pdf.
Dafik, R. Alfarisi, R. M. Prihandini, R. Adawiyah, and I. H. Agustin, “Inclusive distance antimagic graphs,” in AIP Conference Proceedings, vol. 2014, AIP Publishing, 2018. https://doi.org/10.1063/1.5054487.
A. O’Neal and P. Slater, “Uniqueness of vertex magic constants,” SIAM J. Discrete Math., vol. 27, no. 2, 2013. https://doi.org/10.1137/110834421.
A. O’Neal and P. Slater, “An introduction to distance d magic graphs,” J. Indones. Math. Soc., vol. Special Edition, 2011. https://doi.org/10.22342/jims.0.0.22.89-107.
R. Simanjuntak and K. Wijaya, “On distance antimagic graphs,” ArXiv. https://arxiv.org/abs/1312.7405.
A. A. G. Ngurah, N. Inayah, and M. I. S. Musti, “On d-distance (anti)magic labelings of shadow graph of some graphs,” Electronic Journal of Graph Theory and Applications, vol. 12, no. 1, 2024. http://dx.doi.org/10.5614/ejgta.2024.12.1.3.
S. Cichacz and D. Froncek, “Distance magic circulant graphs,” Discrete Mathematics, vol. 339, no. 1, 2016. https://doi.org/10.1016/j.disc.2015.07.002.
Authors
Copyright (c) 2026 Journal of the Indonesian Mathematical Society

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




