Abstract
A vertex coloring that ensures every pair of different colors is represented at least once is termed complete coloring. The diachromatic number of an acyclic digraph denotes the maximum number of colors required for its complete coloring. This study delves into the diachromatic numbers of lobster digraphs, fireworks digraphs, banana tree digraphs, and coconut tree digraphs under specific and arbitrary directional orientations.
Full text article
References
V. Neumann-Lara, “The dichromatic number of a digraph,” Journal of Combinatorial Theory, Series B, vol. 33, no. 3, pp. 265–270, 1982. https://doi.org/10.1016/0095-8956(82)90046-6.
F. Harary and S. Hedetniemi, “The achromatic number of a graph,” Journal Of Combinatorial Theory, vol. 8, pp. 154–161, 1970. https://doi.org/10.1016/S0021-9800(70)80072-2.
G. Araujo-Pardo, J. J. Montellano-Ballesteros, M. Olsen, and C. Rubio-Montiel, “Achromatic numbers for circulant graphs and digraphs,” Discussiones Mathematicae Graph Theory, vol. 41, no. 3, pp. 713–724, 2021. https://www.dmgt.uz.zgora.pl/publish/article.php?doi=2327.
G. Araujo-Pardo, J. J. Montellano-Ballesteros, M. Olsen, and C. Rubio-Montiel, “The diachromatic number of digraphs,” Electronic Journal of Combinatorics, vol. 25, no. 3, 2018. https://doi.org/10.37236/7807.
N. Kusumastuti, Raventino, and F. Fran, “Diachromatic number of double star graph,” in J. Phys. Conf., vol. 2160, IOP Publishing, 2021. https://ui.adsabs.harvard.edu/link_gateway/2021JPhCS2106a2024K/doi:10.1088/1742-6596/2106/1/012024.
M. Olsen, C. Rubio-Montiel, and A. Silva-Ram´ırez, “Zykov sums of digraphs with diachromatic number equal to their harmonious chromatic number,” Discrete Mathematics Letters, vol. 14, no. 1, pp. 7–12, 2024. https://www.dmlett.com/archive/v14/DML24_v14_pp7-12.pdf.
P. G. D. Gumilar, L. P. I. Harini, and K. Sari, “Dimensi metrik graph lobster ln(q; r),” E-Jurnal Matematika, vol. 2, no. 2, pp. 42–48, 2013. https://doi.org/10.24843/MTK.2013.v02.i02.p037.
A. Ali, H. Iqbal, W. Nazeer, and S. M. Kang, “On topological indices of line graph of firecracker graph,” International Journal of Pure and Applied Mathematics, vol. 116, no. 4, pp. 1035–1042, 2017. https://www.ijpam.eu/contents/2017-116-4/18/18.pdf.
N. Nurdin, “On the total vertex irregularity strengths of quadtrees and banana trees,” Journal of the Indonesian Mathematical Society, vol. 18, no. 1, pp. 31–36, 2012. https://doi.org/10.22342/jims.18.1.107.31-36.
R. Ponraj, A. Gayathri, and S. Somasundaram, “4-remainder cordial of some tree related graphs,” International J. Math. Combin, vol. 2, pp. 56–71, 2022. https://fs.unm.edu/IJMC/4-Remainder_Cordial_of_Some_Tree_Related_Graphs.pdf.
K. J. Edwards, “Achromatic number of collections of paths and cycles,” Discrete Mathematics, vol. 313, no. 19, pp. 1856–1860, 2013. https://doi.org/10.1016/j.disc.2012.08.008.
Authors
Copyright (c) 2025 Journal of the Indonesian Mathematical Society

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.