ON STRONG AND WEAK CONVERGENCE IN $n-$HILBERT SPACES

Agus L. Soenjaya

Abstract


We discuss the concepts of strong and weak convergence in n-Hilbert spaces and study their properties. Some examples are given to illustrate the concepts. In particular, we prove an analogue of Banach-Saks-Mazur theorem and Radon-Riesz property in the case of n-Hilbert space.

DOI : http://dx.doi.org/10.22342/jims.19.2.164.79-87


Keywords


Strong and weak convergence, n-Hilbert space.

Full Text:

PDF


DOI: https://doi.org/10.22342/jims.19.2.164.79-87

Refbacks

  • There are currently no refbacks.



Journal of the Indonesian Mathematical Society
Mathematics Department, Universitas Gadjah Mada
Senolowo, Sinduadi, Mlati, Sleman Regency, Special Region of Yogyakarta 55281, Telp. (0274) 552243
Email: jims.indoms@gmail.com


p-ISSN: 2086-8952 | e-ISSN: 2460-0245


Journal of the Indonesian Mathematical Society is licensed under a Creative Commons Attribution 4.0 International License

web statistics
View My Stats