Main Article Content

Abstract

It is known that fractional integral operators are not bounded from Lebesgue integrable functions to Lebesgue space for some particular related exponent. Based on some recent results by Schikorra, Spector, and Van Schaftingen, we investigate commutators of fractional integral operators on Lebesgue integrable functions. We establish a weak type estimates for these commutators generated by essentially bounded functions. Under the same assumption, we also prove that the norm of these commutators are dominated by the norm of the Riesz transform.

Keywords

fractional integral operators commutators Riesz transform Lebesgue spaces

Article Details

How to Cite
Wijaya, V. R. ., Hakim, D. I. ., & Setya Budhi, M. W. . (2023). A note on some Endpoint Estimates of Commutators of Fractional Integral Operators. Journal of the Indonesian Mathematical Society, 29(3), 322–327. https://doi.org/10.22342/jims.29.3.1599.322-327

References

  1. Mujdat Agcayazi et al. “A note on maximal commutators and commutators of maximal functions”. In: Journal of the Mathematical Society of Japan (Oct. 2012). doi: 10.2969/jmsj/06720581.
  2. M. Bramanti. “Commutators of integral operators with positive kernels”. English. In: Le Matematiche (Catania) 49 (1994), pp. 149–168.
  3. S. Chanillo. “A note on commutators”. English. In: Indiana Univ. Math. J. 31 (1982), pp. 7–56. issn: 0022-2518. doi: 10.1512/iumj.1982.31.31002.
  4. R. R. Coifman, R. Rochberg, and Guido Weiss. “Factorization theorems for Hardy spaces in several variables”. English. In: Ann. Math. (2) 103 (1976), pp. 611–635. issn: 0003-486X. doi: 10.2307/1970954.
  5. Yong Ding, Shanzhen Lu, and Pu Zhang. “Weak estimates for commutators of fractional integral operators”. In: Science in China Series A: Mathematics 44 (July 2001), pp. 877–888. doi: 10.1007/BF02880137.
  6. C. Fefferman and E. M. Stein. “Hp spaces of several variables”. English (US). In: Acta Mathematica 129.1 (Dec. 1972), pp. 137–193. issn: 0001-5962. doi: 10.1007/BF02392215.
  7. Q. Guo and J. Zhou. “Boundedness and Compactness of Commutators for Bilinear Fractional Integral Operators on Morrey Spaces”. In: Analysis Mathematica 47 (1 2021). issn: 1588273X. doi: 10.1007/s10476-021-0067-9.
  8. Shanzhen Lu, Yong Ding, and Dunyan Yan. Singular Integrals and Related Topics. World Scientific Publishing Company, 2007. doi: 10.1142/6428.
  9. Toru Nogayama. “Boundedness of commutators of fractional integral operators on mixed Morrey spaces”. In: Integral Transforms and Special Functions 30 (10 2019). issn: 14768291. doi: 10.1080/10652469.2019.1619718.
  10. Armin Schikorra, Daniel Spector, and Jean Van Schaftingen. “An L1-type estimate for Riesz potentials”. In: Revista Matem´atica Iberoamericana 33.1 (2017), pp. 291–303. issn: 02132230. doi: 10.4171/rmi/937.
  11. Daniel Spector. “An optimal Sobolev embedding for L1”. In: Journal of Functional Analysis 279.3 (2020), p. 108559. issn: 0022-1236. doi: https://doi.org/10.1016/j.jfa.2020. 108559. url: https://www.sciencedirect.com/science/article/pii/S0022123620301026.
  12. Elias M. Stein and Guido Weiss. “On the theory of harmonic functions of several variables: I. The theory of Hp-spaces”. In: Acta Mathematica 103.1-2 (1960), pp. 25–62. doi: 10.1007/BF02546524. url: https://doi.org/10.1007/BF02546524

Most read articles by the same author(s)