Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- Arias, M. L., Corach, G., and Gonzalez, M. C., ”Partial isometries in semi-Hilbertian spaces. Linear Algebra and its Applications”, 428(7) (2008), 1460-1475.
- Arias, M. L., Corach, G., and Gonzalez, M. C., ”Metric properties of projections in semiHilbertian spaces”, Integral Equations and Operator Theory, 62(1) (2008), 11-28.
- Ahmed, O. A. M. S., and Saddi, A., ”A-m-Isometric operators in semi-Hilbertian spaces”, Lin. Algebra and its appl., 436(10) (2012), 3930-3942.
- Baklouti, H., and Namouri, S., ”Closed operator in semi-Hilbertian spaces”, Lin. and Multilinear Algebra, 70(20) (2022) 5847-5858.
- Benali, A., and Mahmoud, S.A.O.A., ”(α, β)-A-Normal operators in semi-Hilbertian spaces”, Afrika Matematika, 30(5) (2019), 903-920.
- Bhunia, P., Kittaneh, F., Paul, K., and Sen, A. ”Anderson’s theorem and A-spectral radius bounds for semi-Hilbertian space operators.” Lin. Alg. and its Appl., 657 (2023), 147-162.
- Bovdi, V.A., Klymchuk, T., Rybalkina, T., Salima,M.A., and Sergeichuk, V.V., ”Operators on positive semi-definite inner product spaces”, Lin. Alg. and its Appl., 596 (2020),82-105.
- Kittaneh, F., and Zamani,A., ”A refinement of A-Buzano inequality and applications to A-numerical radius inequalities”, Lin. Alg. and its Appl., (2023).
- Krein, M. G., ”Compact linear operators on functional spaces with two norms”, Integral Equations and Operator Theory, 30(2) (1998), 140-162.
- Promislow, S. D., A first course in functional analysis, Wiley-Interscience, 2008.
- Saddi, A., ”A-Normal operators in Semi-Hilbertian spaces”, The Australian J. of Math. Anal. and Appl., 9(1) (2012), 1-12.
- Sen, J., Sain, D., and Paul, K., ”Orthogonality and norm attainment of operators in semiHilbertian space”, Ann. of Funct. Anal., 12(1) (2021), 1-12.
- Sen, J., and Paul, K., ”(ε, A)-approximate numerical radius orthogonality and numerical radius derivative”, Mathematica Slovaca 73(1) (2023), 147-158.
- Sun W., ”Generalized inverse solution for general quadratic programming”, Num. Math. J. of Chinese Univ., (1991) 94-98.
- Tam, T.Y and Zhang, P., Spectral decomposition of selfadjoint matrices in positive semidefinite inner product spaces and its applications, Lin. and Multilinear Algebra, 67(9)(2019),1829-1838.
- Zaanen, A.C., ”Normalisable transformations in Hilbert space and systems of linear integral equations”, Acta Math., 83 (1950), 197–248.
- Zamani, A., ”Birkhoff-James orthogonality of operators in semi-Hilbertian spaces and its applications”, Ann. of Funct. Anal., 10(3) (2019), 433-445
References
Arias, M. L., Corach, G., and Gonzalez, M. C., ”Partial isometries in semi-Hilbertian spaces. Linear Algebra and its Applications”, 428(7) (2008), 1460-1475.
Arias, M. L., Corach, G., and Gonzalez, M. C., ”Metric properties of projections in semiHilbertian spaces”, Integral Equations and Operator Theory, 62(1) (2008), 11-28.
Ahmed, O. A. M. S., and Saddi, A., ”A-m-Isometric operators in semi-Hilbertian spaces”, Lin. Algebra and its appl., 436(10) (2012), 3930-3942.
Baklouti, H., and Namouri, S., ”Closed operator in semi-Hilbertian spaces”, Lin. and Multilinear Algebra, 70(20) (2022) 5847-5858.
Benali, A., and Mahmoud, S.A.O.A., ”(α, β)-A-Normal operators in semi-Hilbertian spaces”, Afrika Matematika, 30(5) (2019), 903-920.
Bhunia, P., Kittaneh, F., Paul, K., and Sen, A. ”Anderson’s theorem and A-spectral radius bounds for semi-Hilbertian space operators.” Lin. Alg. and its Appl., 657 (2023), 147-162.
Bovdi, V.A., Klymchuk, T., Rybalkina, T., Salima,M.A., and Sergeichuk, V.V., ”Operators on positive semi-definite inner product spaces”, Lin. Alg. and its Appl., 596 (2020),82-105.
Kittaneh, F., and Zamani,A., ”A refinement of A-Buzano inequality and applications to A-numerical radius inequalities”, Lin. Alg. and its Appl., (2023).
Krein, M. G., ”Compact linear operators on functional spaces with two norms”, Integral Equations and Operator Theory, 30(2) (1998), 140-162.
Promislow, S. D., A first course in functional analysis, Wiley-Interscience, 2008.
Saddi, A., ”A-Normal operators in Semi-Hilbertian spaces”, The Australian J. of Math. Anal. and Appl., 9(1) (2012), 1-12.
Sen, J., Sain, D., and Paul, K., ”Orthogonality and norm attainment of operators in semiHilbertian space”, Ann. of Funct. Anal., 12(1) (2021), 1-12.
Sen, J., and Paul, K., ”(ε, A)-approximate numerical radius orthogonality and numerical radius derivative”, Mathematica Slovaca 73(1) (2023), 147-158.
Sun W., ”Generalized inverse solution for general quadratic programming”, Num. Math. J. of Chinese Univ., (1991) 94-98.
Tam, T.Y and Zhang, P., Spectral decomposition of selfadjoint matrices in positive semidefinite inner product spaces and its applications, Lin. and Multilinear Algebra, 67(9)(2019),1829-1838.
Zaanen, A.C., ”Normalisable transformations in Hilbert space and systems of linear integral equations”, Acta Math., 83 (1950), 197–248.
Zamani, A., ”Birkhoff-James orthogonality of operators in semi-Hilbertian spaces and its applications”, Ann. of Funct. Anal., 10(3) (2019), 433-445