On the Locating-Chromatic Number of the Sunflower Graph

Des Welyyanti (1), Rifda Sasmi Zahra (2), Lyra Yulianti (3), Yanita Yanita (4)
(1) Department of Mathematics and Data Sciences, Universitas Andalas, Indonesia,
(2) Department of Mathematics and Data Sciences, Universitas Andalas, Indonesia,
(3) Department of Mathematics and Data Sciences, Universitas Andalas, Indonesia,
(4) Department of Mathematics and Data Sciences, Universitas Andalas, Indonesia

Abstract

Let c be vertex coloring of a connected graph. Define $c: V \rightarrow {1, 2, ...,k}$ such that $c(u) \neq c(v)$ for adjacent vertices u and $v$ in G. Let S_i be a set of vertices assigned by color i where $1 \leq i \leq k$, defined as color class. Let $Pi ={S_1, S_2, ..., S_k}$ be an ordered partition of V(G) that is induced by colo-ring c, then the representation of vertex v with respect to Pi is called a color code of v, denoted as $c_\Pi(v)$, defined as $c_\Pi(v)=(d(v,S_1),d(v,S_2),\ldots,d(v,S_k))$, where d(v, S_i ) =min{d(v,x) | x \in S_i } for $1 \leq i \leq k$. If all distinct vertices of G have distinct color codes, then c is called a k-locating coloring of G. The locating-chromatic number is defined as the minimum k such that graph G admits a k-locating coloring, denoted by $\chi_L(G)$. In this paper, we determine the locating-chromatic number of the sunflower graph SF_n for $n \geq 3$

Full text article

Generated from XML file

References

G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, “The locating-chromatic number of a graph,” Bull. Inst. Combin. Appl, vol. 36, pp. 89–101, 2002.

I. A. Purwasih, E. T. Baskoro, H. Assiyatun, and W. Djohan, “The locating-chromatic number for a subdivision of a wheel on one cycle edge,” AKCE Int. J. Graphs. Comb., vol. 10, no. 3, pp. 327–336, 2013. https://doi.org/10.1080/09728600.2013.12088749.

D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, “On locating chromatic number of homogeneous lobster,” AKCE Int. J. Graph Comb., vol. 10, pp. 245–252, 2015. https://doi.org/10.1080/09728600.2013.12088741.

A. Behtoei and M. Anbarloei, “The locating chromatic number of the join of graphs,” Bulletin of the Iranian Mathematical Society, vol. 40, no. 6, pp. 1491–1504, 2014. https://doi.org/10.48550/arXiv.1112.2357.

I. A. Purwasih, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, “The bounds on the locating-chromatic number for a subdivisionof a graph on one edge,” in Procedia Computer Science, vol. 74, pp. 84–88, 2015. https://doi.org/10.1016/j.procs.2015.12.080.

D. Welyyanti, E. Baskoro, R. Simajuntak, and S. Uttunggadewa, “On locating-chromatic number for graphs with dominant vertices,” in Procedia Computer Science, vol. 74, pp. 89–92, 2015. https://doi.org/10.1016/j.procs.2015.12.081.

D. Welyyanti, E. Baskoro, R. Simajuntak, and S. Uttunggadewa, “On the locating-chromatic number for graphs with two homogenous components,” in Journal of Physics: Conference Series, vol. 893, 2017. https://doi.org/10.1088/1742-6596/893/1/012040.

A. Irawan, A. Asmiati, L. Zakaria, and K. Muludi, “The locating-chromatic number of origami graphs,” Algorithms, vol. 14, no. 6, p. 167, 2021. https://doi.org/10.3390/a14060167.

A. Anti, D. Welyyanti, and M. Azhari, “On locating chromatic number of h = pm ∪ wn,” in Journal of Physics: Conference Series, vol. 1742, 2021. https://doi.org/10.1088/1742-6596/1742/1/012024.

S. Rahmatalia, Asmiati, and Notiragayu, “Bilangan kromatik lokasi graf split lintasan,” Jurnal Matematika Integratif, vol. 18, no. 1, pp. 73–80, 2022. https://doi.org/10.24198/jmi.v18.n1.36091.73-80.

I. W. F. Sudarsana, F. Susanto, and S. Musdalifah, “The locating chromatic number for m-shadow of a connected graph,” Electronic Journal of Graph Theory and Applications, vol. 10, no. 2, pp. 589–601, 2022. https://doi.org/10.5614/ejgta.2022.10.2.18.

F. Zikra, D. Welyyanti, and L. Yulianti, “Bilangan kromatik lokasi gabungan dua graf kipas fn untuk beberapa n, n ≥ 3,” Jurnal Matematika UNAND, vol. 11, no. 3, pp. 159–170, 2022. https://doi.org/10.25077/jmua.11.3.159-170.2022.

A. Asmiati, A. Irawan, A. Nuryaman, and K. Muludi, “The locating chromatic number for certain operation of origami graphs,” Mathematics and Statistics, vol. 11, no. 1, pp. 101–106, 2023. https://doi.org/10.13189/ms.2023.110111.

D. Welyyanti, Yanita, M. Silvia, and T. Apriliza, “On locating-chromatic number for certain lobster graph,” in AIP Conference Proceedings, vol. 2614, 2023. https://doi.org/10.1063/5.0127214.

I. Javaid and S. Shokat, “On the partition dimension of some wheel related graphs,” Journal of Prime Research in Mathematics, vol. 4, pp. 154–164, 2008. https://jprm.sms.edu.pk/index.php/jprm/article/view/44.

Authors

Des Welyyanti
wely@sci.unand.ac.id (Primary Contact)
Rifda Sasmi Zahra
Lyra Yulianti
Yanita Yanita
Welyyanti, D., Zahra, R. S., Yulianti, L., & Yanita, Y. (2026). On the Locating-Chromatic Number of the Sunflower Graph. Journal of the Indonesian Mathematical Society, 32(1), 1516. https://doi.org/10.22342/jims.v32i1.1516

Article Details

Crossref
Scopus
Google Scholar
Europe PMC