Abstract
Let c be vertex coloring of a connected graph. Define $c: V \rightarrow {1, 2, ...,k}$ such that $c(u) \neq c(v)$ for adjacent vertices u and $v$ in G. Let S_i be a set of vertices assigned by color i where $1 \leq i \leq k$, defined as color class. Let $Pi ={S_1, S_2, ..., S_k}$ be an ordered partition of V(G) that is induced by colo-ring c, then the representation of vertex v with respect to Pi is called a color code of v, denoted as $c_\Pi(v)$, defined as $c_\Pi(v)=(d(v,S_1),d(v,S_2),\ldots,d(v,S_k))$, where d(v, S_i ) =min{d(v,x) | x \in S_i } for $1 \leq i \leq k$. If all distinct vertices of G have distinct color codes, then c is called a k-locating coloring of G. The locating-chromatic number is defined as the minimum k such that graph G admits a k-locating coloring, denoted by $\chi_L(G)$. In this paper, we determine the locating-chromatic number of the sunflower graph SF_n for $n \geq 3$
Full text article
References
G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, “The locating-chromatic number of a graph,” Bull. Inst. Combin. Appl, vol. 36, pp. 89–101, 2002.
I. A. Purwasih, E. T. Baskoro, H. Assiyatun, and W. Djohan, “The locating-chromatic number for a subdivision of a wheel on one cycle edge,” AKCE Int. J. Graphs. Comb., vol. 10, no. 3, pp. 327–336, 2013. https://doi.org/10.1080/09728600.2013.12088749.
D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, “On locating chromatic number of homogeneous lobster,” AKCE Int. J. Graph Comb., vol. 10, pp. 245–252, 2015. https://doi.org/10.1080/09728600.2013.12088741.
A. Behtoei and M. Anbarloei, “The locating chromatic number of the join of graphs,” Bulletin of the Iranian Mathematical Society, vol. 40, no. 6, pp. 1491–1504, 2014. https://doi.org/10.48550/arXiv.1112.2357.
I. A. Purwasih, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, “The bounds on the locating-chromatic number for a subdivisionof a graph on one edge,” in Procedia Computer Science, vol. 74, pp. 84–88, 2015. https://doi.org/10.1016/j.procs.2015.12.080.
D. Welyyanti, E. Baskoro, R. Simajuntak, and S. Uttunggadewa, “On locating-chromatic number for graphs with dominant vertices,” in Procedia Computer Science, vol. 74, pp. 89–92, 2015. https://doi.org/10.1016/j.procs.2015.12.081.
D. Welyyanti, E. Baskoro, R. Simajuntak, and S. Uttunggadewa, “On the locating-chromatic number for graphs with two homogenous components,” in Journal of Physics: Conference Series, vol. 893, 2017. https://doi.org/10.1088/1742-6596/893/1/012040.
A. Irawan, A. Asmiati, L. Zakaria, and K. Muludi, “The locating-chromatic number of origami graphs,” Algorithms, vol. 14, no. 6, p. 167, 2021. https://doi.org/10.3390/a14060167.
A. Anti, D. Welyyanti, and M. Azhari, “On locating chromatic number of h = pm ∪ wn,” in Journal of Physics: Conference Series, vol. 1742, 2021. https://doi.org/10.1088/1742-6596/1742/1/012024.
S. Rahmatalia, Asmiati, and Notiragayu, “Bilangan kromatik lokasi graf split lintasan,” Jurnal Matematika Integratif, vol. 18, no. 1, pp. 73–80, 2022. https://doi.org/10.24198/jmi.v18.n1.36091.73-80.
I. W. F. Sudarsana, F. Susanto, and S. Musdalifah, “The locating chromatic number for m-shadow of a connected graph,” Electronic Journal of Graph Theory and Applications, vol. 10, no. 2, pp. 589–601, 2022. https://doi.org/10.5614/ejgta.2022.10.2.18.
F. Zikra, D. Welyyanti, and L. Yulianti, “Bilangan kromatik lokasi gabungan dua graf kipas fn untuk beberapa n, n ≥ 3,” Jurnal Matematika UNAND, vol. 11, no. 3, pp. 159–170, 2022. https://doi.org/10.25077/jmua.11.3.159-170.2022.
A. Asmiati, A. Irawan, A. Nuryaman, and K. Muludi, “The locating chromatic number for certain operation of origami graphs,” Mathematics and Statistics, vol. 11, no. 1, pp. 101–106, 2023. https://doi.org/10.13189/ms.2023.110111.
D. Welyyanti, Yanita, M. Silvia, and T. Apriliza, “On locating-chromatic number for certain lobster graph,” in AIP Conference Proceedings, vol. 2614, 2023. https://doi.org/10.1063/5.0127214.
I. Javaid and S. Shokat, “On the partition dimension of some wheel related graphs,” Journal of Prime Research in Mathematics, vol. 4, pp. 154–164, 2008. https://jprm.sms.edu.pk/index.php/jprm/article/view/44.
Authors
Copyright (c) 2026 Journal of the Indonesian Mathematical Society

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




