The strong 3-rainbow index of graphs containing some cycles
Abstract
A tree of minimum size in an edge-colored connected graph G is a rainbow Steiner tree if no two edges of G are colored the same. For an integer k, the strong k-rainbow index $srx_k(G)$ of G is the smallest number of colors required in an edge-coloring of G so that there exists a rainbow Steiner tree connecting every k-subset S of V(G). We focus on k=3. It is obvious that $srx_3(G)\leq\lVert G\rVert$ where $\lVert G\rVert$ denotes the size of G. It has been proven that $srx_3(T_n)=\lVert T_n\rVert$. In this paper, we study how the $srx_3(T_n)$ changes when we add at least one edge to $T_n$. We provide a sharp upper bound and exact values of $srx_3(G)$ where G is a graph containing at most two cycles. We obtain that $srx_3(G)=\lVert G\rVert$ where G is a unicyclic graph of girth 7 or at least 9. Otherwise, $srx_3(G)<\lVert G\rVert$.
Full text article
References
Z. Y. Awanis and A. N. M. Salman, “The strong 3-rainbow index of some certain graphs and its amalgamation,” Opuscula Math., vol. 42, no. 2, pp. 527–547, 2022. https://doi.org/10.7494/OpMath.2022.42.4.527.
G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “Rainbow connection in graphs,” Math. Bohem., vol. 133, pp. 85–98, 2008. https://doi.org/10.21136/MB.2008.133947.
S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, “Hardness and algorithms for rainbow connection,” J. Comb. Optim., vol. 21, pp. 330–347, 2011. https://doi.org/10.1007/s10878-009-9250-9.
Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, “On rainbow connection,” Electron. J. Combin., vol. 15, p. R57, 2008. https://doi.org/10.37236/781.
Q. Cai, X. Li, and Y. Zhao, “Note on the upper bound of the rainbow index of a graph,” Discrete Appl. Math., vol. 209, pp. 68–74, 2016. https://doi.org/10.1016/j.dam.2015.10.019.
G. Chartrand, F. Okamoto, and P. Zhang, “Rainbow trees in graphs and generalized connectivity,” Networks, vol. 55, pp. 360–367, 2010. https://doi.org/10.1002/net.20339.
T. Liu and Y. Hu, “Some upper bounds for 3-rainbow index of graphs,” J. Combin. Math. Combin. Comput., vol. 97, pp. 217–225, 2016. https://combinatorialpress.com/article/jcmcc/Volume%20097/vol-097-paper%2015.pdf.
Z. Y. Awanis and A. N. M. Salman, “The 3-rainbow index of amalgamation of some graphs with diameter 2,” in IOP Conference Series: Journal of Physics, vol. 1127, p. 012058, IOP Publishing Ltd, 2019. https://doi.org/10.1088/1742-6596/1127/1/012058.
L. Chen, X. Li, K. Yang, and Y. Zhao, “The 3-rainbow index of a graph,” Discuss. Math. Graph Theory, vol. 35, pp. 81–94, 2015. https://doi.org/10.7151/dmgt.1780.
D. Kartika and A. N. M. Salman, “The 3-rainbow index of some graphs that constructed by joining a graph with a trivial graph,” in IOP Conference Series: Journal of Physics, vol. 1127, p. 012060, IOP Publishing Ltd, 2019. https://doi.org/10.1088/1742-6596/1127/1/012060.
T. Liu and Y. Hu, “The 3-rainbow index of graph operations,” WSEAS Trans. Math., vol. 13, pp. 161–170, 2014. https://www.wseas.org/multimedia/journals/mathematics/2014/a045706-361.pdf.
X. Li, I. Schiermeyer, K. Yang, and Y. Zhao, “Graphs with 3-rainbow index n − 1 and n − 2,” Discuss. Math. Graph Theory, vol. 35, pp. 105–120, 2015. https://doi.org/10.7151/dmgt.1783.
X. Li, Y. Shi, and Y. Sun, “Rainbow connections of graphs: a survey,” Graphs Combin., vol. 29, pp. 1–38, 2013. https://doi.org/10.1007/s00373-012-1243-2.
X. Li and Y. Sun, “An updated survey on rainbow connections of graphs - a dynamic survey,” Theory Appl. Graphs, vol. 0, p. Article 3, 2017. https://doi.org/10.20429/tag.2017.000103.
Z. Y. Awanis, A. Salman, S. W. Saputro, M. Baˇca, and A. Semaniˇcov´a-Feˇnovˇc´ıkov´a, “The strong 3-rainbow index of edge-amalgamation of some graphs,” Turkish J. Math., vol. 44, pp. 446–462, 2020. https://doi.org/10.3906/mat-1911-49.
Z. Y. Awanis, A. N. M. Salman, and S. W. Saputro, “The strong 3-rainbow index of comb product of a tree and a connected graph,” J. Inf. Process., vol. 28, pp. 865–875, 2020. https://doi.org/10.2197/ipsjjip.28.865.
Z. Y. Awanis, A. N. M. Salman, and S. W. Saputro, “The strong 3-rainbow index of edge-comb product of a path and a connected graph,” Electron. J. Graph Theory Appl., vol. 10, pp. 33–50, 2022. https://doi.org/10.5614/ejgta.2022.10.1.3.
A. N. M. Salman, Z. Y. Awanis, and S. W. Saputro, “Graphs with strong 3-rainbow index equals 2,” in IOP Conference Series: Journal of Physics, vol. 2157, p. 012011, IOP Publishing Ltd, 2022. https://doi.org/10.1088/1742-6596/2157/1/012011.
Authors
Copyright (c) 2026 Journal of the Indonesian Mathematical Society

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




