The strong 3-rainbow index of graphs containing some cycles

Zata Yumni Awanis (1), A. N. M. Salman (2), Suhadi Wido Saputro (3)
(1) Research Center for Computing, National Research and Innovation Agency (BRIN) Bandung, Indonesia,
(2) Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia,
(3) Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

Abstract

A tree of minimum size in an edge-colored connected graph G is a rainbow Steiner tree if no two edges of G are colored the same. For an integer k, the strong k-rainbow index $srx_k(G)$ of G is the smallest number of colors required in an edge-coloring of G so that there exists a rainbow Steiner tree connecting every k-subset S of V(G). We focus on k=3. It is obvious that $srx_3(G)\leq\lVert G\rVert$ where $\lVert G\rVert$ denotes the size of G. It has been proven that $srx_3(T_n)=\lVert T_n\rVert$. In this paper, we study how the $srx_3(T_n)$ changes when we add at least one edge to $T_n$. We provide a sharp upper bound and exact values of $srx_3(G)$ where G is a graph containing at most two cycles. We obtain that $srx_3(G)=\lVert G\rVert$ where G is a unicyclic graph of girth 7 or at least 9. Otherwise, $srx_3(G)<\lVert G\rVert$.

Full text article

Generated from XML file

References

Z. Y. Awanis and A. N. M. Salman, “The strong 3-rainbow index of some certain graphs and its amalgamation,” Opuscula Math., vol. 42, no. 2, pp. 527–547, 2022. https://doi.org/10.7494/OpMath.2022.42.4.527.

G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “Rainbow connection in graphs,” Math. Bohem., vol. 133, pp. 85–98, 2008. https://doi.org/10.21136/MB.2008.133947.

S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, “Hardness and algorithms for rainbow connection,” J. Comb. Optim., vol. 21, pp. 330–347, 2011. https://doi.org/10.1007/s10878-009-9250-9.

Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, “On rainbow connection,” Electron. J. Combin., vol. 15, p. R57, 2008. https://doi.org/10.37236/781.

Q. Cai, X. Li, and Y. Zhao, “Note on the upper bound of the rainbow index of a graph,” Discrete Appl. Math., vol. 209, pp. 68–74, 2016. https://doi.org/10.1016/j.dam.2015.10.019.

G. Chartrand, F. Okamoto, and P. Zhang, “Rainbow trees in graphs and generalized connectivity,” Networks, vol. 55, pp. 360–367, 2010. https://doi.org/10.1002/net.20339.

T. Liu and Y. Hu, “Some upper bounds for 3-rainbow index of graphs,” J. Combin. Math. Combin. Comput., vol. 97, pp. 217–225, 2016. https://combinatorialpress.com/article/jcmcc/Volume%20097/vol-097-paper%2015.pdf.

Z. Y. Awanis and A. N. M. Salman, “The 3-rainbow index of amalgamation of some graphs with diameter 2,” in IOP Conference Series: Journal of Physics, vol. 1127, p. 012058, IOP Publishing Ltd, 2019. https://doi.org/10.1088/1742-6596/1127/1/012058.

L. Chen, X. Li, K. Yang, and Y. Zhao, “The 3-rainbow index of a graph,” Discuss. Math. Graph Theory, vol. 35, pp. 81–94, 2015. https://doi.org/10.7151/dmgt.1780.

D. Kartika and A. N. M. Salman, “The 3-rainbow index of some graphs that constructed by joining a graph with a trivial graph,” in IOP Conference Series: Journal of Physics, vol. 1127, p. 012060, IOP Publishing Ltd, 2019. https://doi.org/10.1088/1742-6596/1127/1/012060.

T. Liu and Y. Hu, “The 3-rainbow index of graph operations,” WSEAS Trans. Math., vol. 13, pp. 161–170, 2014. https://www.wseas.org/multimedia/journals/mathematics/2014/a045706-361.pdf.

X. Li, I. Schiermeyer, K. Yang, and Y. Zhao, “Graphs with 3-rainbow index n − 1 and n − 2,” Discuss. Math. Graph Theory, vol. 35, pp. 105–120, 2015. https://doi.org/10.7151/dmgt.1783.

X. Li, Y. Shi, and Y. Sun, “Rainbow connections of graphs: a survey,” Graphs Combin., vol. 29, pp. 1–38, 2013. https://doi.org/10.1007/s00373-012-1243-2.

X. Li and Y. Sun, “An updated survey on rainbow connections of graphs - a dynamic survey,” Theory Appl. Graphs, vol. 0, p. Article 3, 2017. https://doi.org/10.20429/tag.2017.000103.

Z. Y. Awanis, A. Salman, S. W. Saputro, M. Baˇca, and A. Semaniˇcov´a-Feˇnovˇc´ıkov´a, “The strong 3-rainbow index of edge-amalgamation of some graphs,” Turkish J. Math., vol. 44, pp. 446–462, 2020. https://doi.org/10.3906/mat-1911-49.

Z. Y. Awanis, A. N. M. Salman, and S. W. Saputro, “The strong 3-rainbow index of comb product of a tree and a connected graph,” J. Inf. Process., vol. 28, pp. 865–875, 2020. https://doi.org/10.2197/ipsjjip.28.865.

Z. Y. Awanis, A. N. M. Salman, and S. W. Saputro, “The strong 3-rainbow index of edge-comb product of a path and a connected graph,” Electron. J. Graph Theory Appl., vol. 10, pp. 33–50, 2022. https://doi.org/10.5614/ejgta.2022.10.1.3.

A. N. M. Salman, Z. Y. Awanis, and S. W. Saputro, “Graphs with strong 3-rainbow index equals 2,” in IOP Conference Series: Journal of Physics, vol. 2157, p. 012011, IOP Publishing Ltd, 2022. https://doi.org/10.1088/1742-6596/2157/1/012011.

Authors

Zata Yumni Awanis
zata.yumni@unram.ac.id (Primary Contact)
A. N. M. Salman
Suhadi Wido Saputro
Awanis, Z. Y., Salman, A. N. M., & Saputro, S. W. (2026). The strong 3-rainbow index of graphs containing some cycles. Journal of the Indonesian Mathematical Society, 32(1), 1513. https://doi.org/10.22342/jims.v32i1.1513

Article Details

Crossref
Scopus
Google Scholar
Europe PMC