A New Notion of Inner Product in A Subspace of n-Normed Spaces

Muh Nur (1) , Mochammad Idris (2)
(1) a:1:{s:5:"en_US";s:21:"Hasanuddin University";}, Indonesia,
(2) , Indonesia

Abstract

Given an n-normed space X for n>= 2$, we investigate the completness of Y (as subspace of X) respect to a new norm that corresponds this new inner product on Y. Moreover, we discuss the angle between two subspaces in Y.

Full text article

Generated from XML file

References

V. Balestro, A.G. Horv`ath, H. Martini, and R. Teixeira, Angles in normed spaces, ` Aequationes

Math., 91(2) (2017), 201-236.

H. Batkunde, and H. Gunawan, A revisit to n-normed spaces through its quotient spaces,

Matematychni Studii 53(2) (2020), 181-191.

R. Benitez, Carlos Orthogonality in normed linear spaces: a classification of the different

concepts and some open problems, Revista Mathematica 2 (1989) 53-57.

S. G¨ahler, Lineare 2-normierte r¨aume, Math. Nachr. 28 (1964), 1-43.

S. G¨ahler, Untersuchungen ¨uber verallgemeinerte m-metrische R¨aume. I, Math. Nachr. 40

(1969), 165-189.

S. G¨ahler, Untersuchungen ¨uber verallgemeinerte m-metrische R¨aume. II, Math. Nachr. 40

(1969), 229-264.

J. R. Giles, Classes of semi-inner-product spaces,Trans. Amer. Math. Soc. 129(3) (1967),

-446.

H. Gunawan, On n-inner products, n-norms, and the Cauchy-Schwarz inequality, Sci. Math.

Jpn. 55 (2002), 53-60.

H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001),

-329.

H. Gunawan, O. Neswan, and W. Setya-Budhi, A formula for angles between two subspaces

of inner product spaces, Beitr. Algebra Geom., 46(2) (2005), 311-320

H. Gunawan, O. Neswan, and E. Sukaesih, Fixed point theorems on bounded sets in an

n-normed space, J. Math. Comput. Sci., 8(2) (2018), 196-215.

H. Gunawan and O. Neswan, On angles between subspaces of inner product spaces, J. Indo.

Math. Soc., 11 (2005), 129-135.

M. Idris , S. Ekariani and H. Gunawan, On the space of p-summable sequences, Mat. Vesnik.,

(1) (2013), 58-63.

R.C. James, Orthogonality in normed linear spaces, Duke Math. J. 12, (1945) 291-302.

S. Konca, M. Idris, and H. Gunawan, p-summable sequence spaces with inner products, Beu

J. Sci. Techn., 5(1) (2015), 37-41.

E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, Inc.,

New York, 1978.

A.L. Soenjaya, On n-bounded and n-continuous operator in n-normed space, Journal of the

Indonesian Mathematical Society, 18(1) (2012), 45-56.

P. M. Mili`ci`c, On the B-angle and g-angle in normed spaces, J. Inequal. Pure Appl. Math.,

(3) (2007), 1-9.

A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299-319.

M. Nur, M. Idris and Firman, Angle in the space of p-summable sequences, AIMS Mathematics, 7(2) (2022), 2810-2819.

M. Nur, and H. Gunawan, A new orthogonality and angle in a normed space, Aequationes

Math. 93 (2019), 547-555.

M. Nur, and H. Gunawan, A note on the g-angle between subspaces of a normed space,

Aequationes Math., 95 (2021), 309-318

Authors

Muh Nur
muhammadnur@unhas.ac.id (Primary Contact)
Mochammad Idris
Nur, M., & Idris, M. . (2023). A New Notion of Inner Product in A Subspace of n-Normed Spaces. Journal of the Indonesian Mathematical Society, 29(3), 372–381. https://doi.org/10.22342/jims.29.3.1412.372-381

Article Details