Main Article Content
Abstract
Some methods have been used to express a finitely generated module over a principal ideal domain as a finite direct sum of its cyclic submodules. In this paper, we give an alternative technique to decompose a free module with finite rank over a principal ideal domain using eigen spaces of its endomorphism ring.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- I. G. A. W.Wardhana, The Decomposition ofa Finitely Generated Module over Some Special Ring, Jurnal Teori dan Aplikasi Matematika 6(2) (2022), 261-267.
- W. C. Brown, Matrices Over Commutative Rings, Marcel Dekker, Inc., New York, 1993. [3] S. Hadjirezaei, S. Hedayat, Decomposition ofFinitely Generated Modues Using Fitting Ideals, Czechoslovak Mathematical Journal 70 (2020), no.4 1179–1190.
- X. R. Ma, H. G. Liu, H. L. Zhang, A Note on Finitely Generated Modules over a PID, Advances in Pure Mathematics 10(12) (2020), 699–705.
- S. Roman, Advanced Linear Algebra, Third Edition, Springer Science+Business Media, LLC, New York, 2008.
References
I. G. A. W.Wardhana, The Decomposition ofa Finitely Generated Module over Some Special Ring, Jurnal Teori dan Aplikasi Matematika 6(2) (2022), 261-267.
W. C. Brown, Matrices Over Commutative Rings, Marcel Dekker, Inc., New York, 1993. [3] S. Hadjirezaei, S. Hedayat, Decomposition ofFinitely Generated Modues Using Fitting Ideals, Czechoslovak Mathematical Journal 70 (2020), no.4 1179–1190.
X. R. Ma, H. G. Liu, H. L. Zhang, A Note on Finitely Generated Modules over a PID, Advances in Pure Mathematics 10(12) (2020), 699–705.
S. Roman, Advanced Linear Algebra, Third Edition, Springer Science+Business Media, LLC, New York, 2008.