Main Article Content

Abstract

The novel ideas in module M over a ring R are introduced in this study. The first one, a generalization of the e∗-lifting module, is known as e∗-hollow-lifting. The second idea, an inference of e∗-lifting, is known as a cofinite e∗-lifting module. We shall demonstrate some of these ideas’ properties

Keywords

e ∗-Lifting modules Lifting modules Hollow-lifting-modules Cofinitely lifting module e ∗-Cofinitely lifting modules

Article Details

How to Cite
Baanoon, H., & Khalid, W. (2022). e*-Hollow-Lifting and Cofinitely e*-Lifting Modules. Journal of the Indonesian Mathematical Society, 28(3), 316–322. https://doi.org/10.22342/jims.28.3.1232.316-322

References

  1. G.F. Birkenmeir, B.J. Muller and S.T. Rizvi, Modules in which Every Fully Invariant Submodule is Essential in a Direct Summand, Comm. Alg. 30(2002), no.3, 1395-1415.
  2. H. Baanoon and W. Khalid, e-Essntial submodule, European Journal of Pure and Applied Mathematics, 15 (2022), no.1, 224-228.
  3. H. Baanoon and W. Khalid, e*-Essential small submodules and e*-hollow modules, European Journal of Pure and Applied Mathematics, 15 (2022), no.2, 478-485.
  4. H. Baanoon and W. Khalid, e*-lifting modules, Missouri Journal of Mathematical Sciences, to appear.
  5. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Sup- plements and Projectivity in Module Theory, Frontiers in Math. Boston: Birkhauser, 2006.
  6. J.L. Garcia, properties of direct summands of modules, Com. Algebra ,17 (1989), 73-92.
  7. K. Goodearl, Ring theory: nonsingular rings and modules, Vol. 33. CRC. Press, 1976.
  8. F. Kasch, Modules and rings, Academic Press., London, 1982.
  9. N. Orhan, D. K. Tutuncu and R. Tribak, On hollow-lifting modules, Taiwanese Journal of Mathematics, 11(2007), no.2, 545-568.
  10. K. Oshiro, Lifting modules, extending modules and their applications to generalized uniserial rings, Hokkaido Math. J., 13(3) (1984), 339-346.
  11. A.C. Ozcan, Modules with small cyclic submodules in their injective hulls, Comm. Algebra, 30(2002), no.4, 1575-1589.
  12. A.C. Ozcan, A. Harnanci and P. F. Smith, Duo modules, Glasgow Mathematical Journal, 48(2006), no.3, 533-545.
  13. Y. Wang, and D. Wu. On Co nitely lifting modules, Algebra Colloquium, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University, (2010), 659-666.
  14. D. X. Zhou and X. R. Zhng, Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics, 2011, 35-6.