Main Article Content

Abstract

In this paper, we introduce the concept of generalized
fuzzy ideals in ternary semigroups, which is a generalization of the fuzzy
ideals of semigroups. In this regard, we define ($\alpha ,\beta $)-fuzzy
left (right, lateral) ideals, ($\alpha ,\beta $)-fuzzy quasi-ideals and ($
\alpha ,\beta $)-fuzzy bi-ideals and invetigate some related properties of
ternary semigroups. Special concentration is paid to ($\in ,\in \vee q$
)-fuzzy left (right, lateral) ideals, ($\in ,\in \vee q$)-fuzzy quasi-ideals
and ($\in ,\in \vee q$)-fuzzy bi-ideals. Finally, we
characterize regular ternary semigroups in terms of these notions.

DOI : http://dx.doi.org/10.22342/jims.19.2.120.123-138

Keywords

Fuzzy subset ($\in \in \vee q$)-fuzzy left (right

Article Details

How to Cite
Davvaz, B. (2014). ON $(ALPHA ,BETA)$-FUZZY IDEALS OF TERNARY SEMIGROUPS. Journal of the Indonesian Mathematical Society, 19(2), 123–138. https://doi.org/10.22342/jims.19.2.120.123-138

References

  1. bibitem{1} J. Ahsan, Kui Yuan Li, M. Shabir, textit{Semigroups
  2. characterized by their fuzzy bi-ideals}, J. Fuzzy Math., 10(2) (2002) 441-449.
  3. bibitem{2} S. K. Bhakat, $left( in vee qright) $-textit{level subset},
  4. Fuzzy Sets Syst., 103 (1999) 529-533.
  5. bibitem{3} S. K. Bhakat, P. Das, textit{On the definition of a fuzzy
  6. subgroup}, Fuzzy Sets Syst., 51 (1992) 235-241.
  7. bibitem{4} S. K. Bhakat, P. Das, $left( in ,in vee qright) $-textit{%
  8. fuzzy subgroups}, Fuzzy Sets Syst., 80 (1996) 359-368.
  9. bibitem{5} S. K. Bhakat, P. Das, textit{Fuzzy subrings and ideals redefined}, Fuzzy Sets Syst., 81 (1996) 383-393.
  10. bibitem{6} P. S. Das, textit{Fuzzy groups and level subgroups}, J. Math.
  11. Anal. Appl., 84 (1981) 264-269.
  12. bibitem{7} B. Davvaz, $left( in ,in vee qright) $-textit{fuzzy
  13. subnearrings and ideals}, Soft Computing, 10 (2006) 206-211.
  14. bibitem{d} B. Davvaz, {it Fuzzy $R$-subgroups with thresholds of near-rings and implication operators}, Soft
  15. Computing, 12 (2008) 875-879.
  16. bibitem{8} V. N. Dixit, S. Dewan, textit{A note on quasi and
  17. bi-ideals in Ternary Semigroups}, Internat. J. Math. Math. Sci., 18(3) (1995) 501-508.
  18. bibitem{9} T. K. Dutta, S. Kar, textit{On ternary semifields,} Math.
  19. Gen. Algebra Appl., 24 (2004) 445-454.
  20. bibitem{10} T. K. Dutta, S. Kar, textit{On Prime ideals and Prime Radical
  21. of Ternary Semirings,} Bull. Cal. Math. Soc., 97(5)(2005) 185-198.
  22. bibitem{11} T. K. Dutta, S. Kar, textit{A note on regular ternary
  23. semirings}, Kyungpook Math. J., 46 (2006) 357-365.
  24. bibitem{12} A. Iampan, textit{The Minimality and Maximality of Left
  25. (Right) Ideals in Ternary Semigroups}, Int. J. Contem. Math. Sci., 5 (2010) 2409-2417.
  26. bibitem{13} Y. B. Jun, S. Z. Song, textit{Generalized fuzzy interior ideals
  27. in semigroups}, Information Sciences, 176 (2006) 3079-3093.
  28. bibitem{14} Y. B. Jun, textit{Generalization of }$(in ,in vee q)$textit{%
  29. -fuzzy sub algebras in BCK/BCI-algebras,} Comput. Math. Appl. 58 (2009)
  30. -1390.
  31. bibitem{15} Y. B. Jun, Y. Xu, J. Ma, textit{Redefined fuzzy implicative
  32. filters}, Information Sciences, 177 (2007) 1422-1429..
  33. bibitem{16} O. Kazanci, S. Yamak, textit{Generalized fuzzy bi-ideals of
  34. semigroup}, Soft Computing, 12 (2008) 1119-1124.
  35. bibitem{17} S.Kar, textit{On Ideals in ternary semirings}, Int.J. Math.
  36. Gen. Sci., 18 (2005) 3015-3023.
  37. bibitem{18} A. Khan, Y. B. Jun, M. Z. Abbas, textit{Characterizations of
  38. ordered semigroups in terms of (}$in ,in vee q$textit{)-fuzzy interior
  39. ideals}, Neural Computing and Applications, DOI 10.1007/s00521-010-0463-8.
  40. bibitem{19} N. Kuroki, textit{Fuzzy bi-ideals in semigroups}, Comment. Math.
  41. Univ. St. Pauli XXVIII-1 (1979) 17-21.
  42. bibitem{20} D. H. Lehmer, textit{A ternary analogue of abelian groups},
  43. Amer. J. Math., (1932) 329-338.
  44. bibitem{21} J. N. Mordeson, D. S. Malik and N. Kuroki, textit{Fuzzy
  45. Semigroups}, Studies in Fuzziness and Soft Computing, 131,
  46. Springer-Verlag Berlin (2003).
  47. bibitem{22} V. Murali, textit{Fuzzy points of equivalent fuzzy subsets,}
  48. Information Sciences, 158 (2004) 277-288.
  49. bibitem{24} M. Shabir, Y. B. Jun and Y. Nawaz,textit{ Semigroups characterized
  50. by }$(in ,in vee q)$textit{-fuzzy ideals,} Comput. Math. Appl., 60 (2010) 1473-1493.
  51. bibitem{25} M. Shabir, Y. B. Jun, Y. Nawaz, textit{Characterizations of
  52. regular semigroups by (}$alpha ,beta $textit{)-fuzzy ideals}, Comput.
  53. Math. Appli., 59 (2010) 161-175.
  54. bibitem{26} F. M. Sioson, textit{Ideal theory in ternary semigroups},
  55. Math.Japon., 10 (1965) 63-84.
  56. bibitem{27} L. A. Zadeh, textit{Fuzzy Sets}, Inform. & Control, 8 (1965)
  57. -353.
  58. bibitem{28} J. Zhan, B. Davvaz, K. P. Shum, textit{A new view of fuzzy
  59. hypernear-rings}, Information Sciences, 178 (2008) 425-438.