Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- Agiralioglu, N., ”Water routing on diverging-converging watershed”, J. Hydraul., 107 (1981), 1003-1017.
- Agiralioglu, N., ”Estimation of the time of concentration for diverging surface”, J. Hydrol. Sci., 33(2) (1988), 173-179.
- Akan, A.O., Yen, C.Y., ”Diffusion-wave flood routing in channel networks”, J. Hydraul., 107 (1981), 719-732.
- Gonwa, W.S., Kavvas, M.L., ”A modified diffusion equation for flood propagation in trapezoidal channels”, J. Hydrol., 83 (1986), 119-136.
- Ponce, V.M., Li, R.M., Simons, D.B., ”Applicability of kinematic and diffusion models”, J. Hydaul., 104 (1978), 353-360.
- Sinha, J., Eswaran, J.S., Bhallamudi, S.M., ”Comparison of spectral and finite difference methods for flood routing”, J. Hydraul., textbf121(2) (1978), 108-117.
- Amein, M., Fang, C.S., ”Implicit flood routing in natural channels”, J. Hydraul., 96 (1970), 918-926.
- Fread, D.L., ”Technique for implicit dynamic routing in rivers with tributaries”, Water Resource. Res., 9(4) (1973), 918-926.
- Koussis, A., ”An approximative dynamic flood routing methods”, Int. Symp. on Unsteady Flow in Open Channel, April 12-15th (1976).
- Lamberti, P., Pilati, S., ”Flood propagation models for real-time forecasting”, J. Hydrol., 175 (1996), 239-265.
- Lai, W., Khan, A.A., ”Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite difference method”, J. Hydro-dynamics, 30(2) (2018), 189-202.
- Keskin, M.E., Agiralioglu, N., ”A simplified dynamic model for flood routing in rectangular channels”, J. Hydrol., 202 (1997), 302-314, https://doi.org/10.1016/S0022-1694(97)00072-3
- Barati, R., Rahimi, S., Akbari, G.H., ”Analysis of dynamic wave model for flood routing in natural rivers”, Water Sci. Eng. , 5(3) (2012), 243-258, doi: 10.3882/j.issn.1674- 2370.2012.03.001.
- Sulistyono, B.A., Wiryanto, L.H., ”Investigation of flood routing by a dynamic wave model in trapezoidal channels”, AIP Conf. Proc., 1867 (2017), 020020, doi: 10.1063/1.4994423.
- Retsinis, E., Daskalaki, E., Papanicolaou, P., ”Dynamic flood wave routing in prismatic channel with hydrologic methods”, J. Water Supply: Re-search and Tech. Aqua, JWS 2019091 (2019).
- Sulistyono, B.A., Wiryanto, L.H., ”A staggered method for numerical flood routing in rectangular channels”, Adv. Appl. Fluid Mech., 23(2) (2019), 171-179.
- Stelling, G.S., Duinmeijer, S.P.A., ”A staggered conservative scheme for every Froude number in rapidly varied shallow water flows”, Int. J. Nu-mer. methods Fluids, 43912 (2003), 1329- 1354, doi: 10.1001/fld.537.
- Mungkasi, S., Magdalena, I., Pudjaprasetya, S.R., Wiryanto, L.H., Robert, S.G., ”A staggered method for the shallow water equations involv-ingvarying channel width an topography”, Int. J. Multiscale Comp. Eng., 16 (3) (2018), 231-244.
- Sulistyono, B.A., Wiryanto, L.H., Mungkasi, S., ”A staggered method for simulating shallow water flows along channels with irregular geometry and friction”, Int. J. Adv. Sci. Eng. Inf. Tech., 10 (3) (2020), 952-958.
- Wiryanto, L.H., Mungkasi, S., ”Numerical solution of wave generated by flow over a bump”, Far East J. Math. Sci., 100(10) (2016), 1717-1726.
- Wiryanto, L.H., Mungkasi, S., ”Analytical solution of Boussinesq equations as a model of wave generation”, AIP Conf. Proc., 1707, 050020-1 (2016b), doi: 10.1063/1.4940852.
- Tuck, E.O., Wiryanto, L.H., ”On steady periodic interfacial waves”, J. Eng. Math., 35 (1999),71-84.
- Wiryanto, L.H., ”Wave propagation passing over a submerged porous breakwater,” J. Eng. Math., 70 (2011),129-136, doi: 10.1007/s10665-010-9419-3.
- Cunge, J.A, Holly, F.M., Verwey, A. Jr., Practical aspects of computational river hydraulics, Pitman, Advanced Publishing Program (1980)
References
Agiralioglu, N., ”Water routing on diverging-converging watershed”, J. Hydraul., 107 (1981), 1003-1017.
Agiralioglu, N., ”Estimation of the time of concentration for diverging surface”, J. Hydrol. Sci., 33(2) (1988), 173-179.
Akan, A.O., Yen, C.Y., ”Diffusion-wave flood routing in channel networks”, J. Hydraul., 107 (1981), 719-732.
Gonwa, W.S., Kavvas, M.L., ”A modified diffusion equation for flood propagation in trapezoidal channels”, J. Hydrol., 83 (1986), 119-136.
Ponce, V.M., Li, R.M., Simons, D.B., ”Applicability of kinematic and diffusion models”, J. Hydaul., 104 (1978), 353-360.
Sinha, J., Eswaran, J.S., Bhallamudi, S.M., ”Comparison of spectral and finite difference methods for flood routing”, J. Hydraul., textbf121(2) (1978), 108-117.
Amein, M., Fang, C.S., ”Implicit flood routing in natural channels”, J. Hydraul., 96 (1970), 918-926.
Fread, D.L., ”Technique for implicit dynamic routing in rivers with tributaries”, Water Resource. Res., 9(4) (1973), 918-926.
Koussis, A., ”An approximative dynamic flood routing methods”, Int. Symp. on Unsteady Flow in Open Channel, April 12-15th (1976).
Lamberti, P., Pilati, S., ”Flood propagation models for real-time forecasting”, J. Hydrol., 175 (1996), 239-265.
Lai, W., Khan, A.A., ”Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite difference method”, J. Hydro-dynamics, 30(2) (2018), 189-202.
Keskin, M.E., Agiralioglu, N., ”A simplified dynamic model for flood routing in rectangular channels”, J. Hydrol., 202 (1997), 302-314, https://doi.org/10.1016/S0022-1694(97)00072-3
Barati, R., Rahimi, S., Akbari, G.H., ”Analysis of dynamic wave model for flood routing in natural rivers”, Water Sci. Eng. , 5(3) (2012), 243-258, doi: 10.3882/j.issn.1674- 2370.2012.03.001.
Sulistyono, B.A., Wiryanto, L.H., ”Investigation of flood routing by a dynamic wave model in trapezoidal channels”, AIP Conf. Proc., 1867 (2017), 020020, doi: 10.1063/1.4994423.
Retsinis, E., Daskalaki, E., Papanicolaou, P., ”Dynamic flood wave routing in prismatic channel with hydrologic methods”, J. Water Supply: Re-search and Tech. Aqua, JWS 2019091 (2019).
Sulistyono, B.A., Wiryanto, L.H., ”A staggered method for numerical flood routing in rectangular channels”, Adv. Appl. Fluid Mech., 23(2) (2019), 171-179.
Stelling, G.S., Duinmeijer, S.P.A., ”A staggered conservative scheme for every Froude number in rapidly varied shallow water flows”, Int. J. Nu-mer. methods Fluids, 43912 (2003), 1329- 1354, doi: 10.1001/fld.537.
Mungkasi, S., Magdalena, I., Pudjaprasetya, S.R., Wiryanto, L.H., Robert, S.G., ”A staggered method for the shallow water equations involv-ingvarying channel width an topography”, Int. J. Multiscale Comp. Eng., 16 (3) (2018), 231-244.
Sulistyono, B.A., Wiryanto, L.H., Mungkasi, S., ”A staggered method for simulating shallow water flows along channels with irregular geometry and friction”, Int. J. Adv. Sci. Eng. Inf. Tech., 10 (3) (2020), 952-958.
Wiryanto, L.H., Mungkasi, S., ”Numerical solution of wave generated by flow over a bump”, Far East J. Math. Sci., 100(10) (2016), 1717-1726.
Wiryanto, L.H., Mungkasi, S., ”Analytical solution of Boussinesq equations as a model of wave generation”, AIP Conf. Proc., 1707, 050020-1 (2016b), doi: 10.1063/1.4940852.
Tuck, E.O., Wiryanto, L.H., ”On steady periodic interfacial waves”, J. Eng. Math., 35 (1999),71-84.
Wiryanto, L.H., ”Wave propagation passing over a submerged porous breakwater,” J. Eng. Math., 70 (2011),129-136, doi: 10.1007/s10665-010-9419-3.
Cunge, J.A, Holly, F.M., Verwey, A. Jr., Practical aspects of computational river hydraulics, Pitman, Advanced Publishing Program (1980)