Main Article Content

Abstract

A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\sum_{v \in V(G)} d(v) \equiv 0 \left( \bmod\;\sum_{v \in D} d(v)\right).$$
The minimum cardinality of a minimal congruent dominating set of $G$ is called
the congruent domination number of $G$ which is denoted by $\gamma_{cd}(G)$.
We establish the bounds on congruent domination number in terms of order of
disjoint union of graphs as well as one point union of graphs.

Keywords

Dominating Set Domination Number Congruent Dominating Set Congruent Domination Number

Article Details

Author Biographies

S. K. Vaidya, Department of Mathematics, Saurashtra University, Rajkot, Gujarat(INDIA).

Professor & Head,

Department of Mathematics,

Saurashtra University, Rajkot, Gujrat(INDIA).

H. D. Vadhel, Research Scholar, Department of Mathematics, Saurashtra University, Rajkot, Gujarat(INDIA).

Research Scholar,
Department of Mathematics,
Saurashtra University, Rajkot, Gujarat(INDIA).
How to Cite
Vaidya, S. K., & Vadhel, H. D. (2022). On Congruent Domination Number of Disjoint and One Point Union of Graphs. Journal of the Indonesian Mathematical Society, 28(3), 251–258. https://doi.org/10.22342/jims.28.3.1102.251-258

References

  1. Berge, C., Theory of Graphs and its Applications, Methuen, London, (1962).
  2. Burton, D.M., Elementary Number Theory, Tata McGraw-Hill Publishing Company Limited, New Delhi, (2008).
  3. Cockayne, E. J., Dawes, R. M. and Hedetniemi, S. T., "Total Domination in Graphs", Networks, 10 no.3, (1980), 211-219,
  4. DOI: https://doi.org/10.1002/net.3230100304
  5. Cockayne, E. J. and Hedetniemi, S. T., "Towards a Theory of Domination in Graphs", Networks, 7 no.3, (1997), 247-261,
  6. DOI: https://doi.org/10.1002/net.3230070305
  7. Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc, New York, NY, (1998),
  8. DOI: https://doi.org/10.1201/9781482246582
  9. Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., Domination in Graphs : Advanced Topics, Chapman and Hall/CRC Pure and Applied Mathematics, (1998),
  10. DOI: https://doi.org/10.1201/9781315141428
  11. Hedetniemi, S. T. and Laskar, R. C., Topics on Domination, North Holland, New York, (1990).
  12. Hedetniemi, S.T. and Laskar, R.C., "Bibliography on Domination in Graphs and some Basic Definitions of Domination Parameters", Discrete Mathematics, 86 no.1-3, (1990), 257-277,
  13. DOI: https://doi.org/10.1016/S0167-5060(08)71054-9
  14. Ore, O., Theory of Graphs, American Mathematical Society, Providence, (1962).
  15. Sampathkumar, E., "The global domination number of a graph", J. Math. Phys. Sci., 23 no.5, (1989), 377-385.
  16. Swaminathan, V. and Dharmalingam, K.M., "Degree Equitable Domination on Graphs", Kragujevac Journal of Mathematics, 35 no.1, (2011), 191-197.
  17. Vaidya, S. K. and Vadhel, H. D., "Congruent Dominating Sets in Graph - A New Concept", Accepted for Publication in TWMS J. App. Eng. Math..
  18. Vaidya, S. K. and Vadhel, H. D., "Congruent Domination Number of Regular Graphs and Trees" (Communicated for Publication).
  19. West, D. B., Introduction to Graph Theory, Prentice-Hall of India Pvt. Ltd., (2006).