Main Article Content
Abstract
The minimum cardinality of a minimal congruent dominating set of $G$ is called
the congruent domination number of $G$ which is denoted by $\gamma_{cd}(G)$.
We establish the bounds on congruent domination number in terms of order of
disjoint union of graphs as well as one point union of graphs.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- Berge, C., Theory of Graphs and its Applications, Methuen, London, (1962).
- Burton, D.M., Elementary Number Theory, Tata McGraw-Hill Publishing Company Limited, New Delhi, (2008).
- Cockayne, E. J., Dawes, R. M. and Hedetniemi, S. T., "Total Domination in Graphs", Networks, 10 no.3, (1980), 211-219,
- DOI: https://doi.org/10.1002/net.3230100304
- Cockayne, E. J. and Hedetniemi, S. T., "Towards a Theory of Domination in Graphs", Networks, 7 no.3, (1997), 247-261,
- DOI: https://doi.org/10.1002/net.3230070305
- Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc, New York, NY, (1998),
- DOI: https://doi.org/10.1201/9781482246582
- Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., Domination in Graphs : Advanced Topics, Chapman and Hall/CRC Pure and Applied Mathematics, (1998),
- DOI: https://doi.org/10.1201/9781315141428
- Hedetniemi, S. T. and Laskar, R. C., Topics on Domination, North Holland, New York, (1990).
- Hedetniemi, S.T. and Laskar, R.C., "Bibliography on Domination in Graphs and some Basic Definitions of Domination Parameters", Discrete Mathematics, 86 no.1-3, (1990), 257-277,
- DOI: https://doi.org/10.1016/S0167-5060(08)71054-9
- Ore, O., Theory of Graphs, American Mathematical Society, Providence, (1962).
- Sampathkumar, E., "The global domination number of a graph", J. Math. Phys. Sci., 23 no.5, (1989), 377-385.
- Swaminathan, V. and Dharmalingam, K.M., "Degree Equitable Domination on Graphs", Kragujevac Journal of Mathematics, 35 no.1, (2011), 191-197.
- Vaidya, S. K. and Vadhel, H. D., "Congruent Dominating Sets in Graph - A New Concept", Accepted for Publication in TWMS J. App. Eng. Math..
- Vaidya, S. K. and Vadhel, H. D., "Congruent Domination Number of Regular Graphs and Trees" (Communicated for Publication).
- West, D. B., Introduction to Graph Theory, Prentice-Hall of India Pvt. Ltd., (2006).
References
Berge, C., Theory of Graphs and its Applications, Methuen, London, (1962).
Burton, D.M., Elementary Number Theory, Tata McGraw-Hill Publishing Company Limited, New Delhi, (2008).
Cockayne, E. J., Dawes, R. M. and Hedetniemi, S. T., "Total Domination in Graphs", Networks, 10 no.3, (1980), 211-219,
DOI: https://doi.org/10.1002/net.3230100304
Cockayne, E. J. and Hedetniemi, S. T., "Towards a Theory of Domination in Graphs", Networks, 7 no.3, (1997), 247-261,
DOI: https://doi.org/10.1002/net.3230070305
Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc, New York, NY, (1998),
DOI: https://doi.org/10.1201/9781482246582
Haynes, T. W., Hedetniemi, S. T. and Slater, P. J., Domination in Graphs : Advanced Topics, Chapman and Hall/CRC Pure and Applied Mathematics, (1998),
DOI: https://doi.org/10.1201/9781315141428
Hedetniemi, S. T. and Laskar, R. C., Topics on Domination, North Holland, New York, (1990).
Hedetniemi, S.T. and Laskar, R.C., "Bibliography on Domination in Graphs and some Basic Definitions of Domination Parameters", Discrete Mathematics, 86 no.1-3, (1990), 257-277,
DOI: https://doi.org/10.1016/S0167-5060(08)71054-9
Ore, O., Theory of Graphs, American Mathematical Society, Providence, (1962).
Sampathkumar, E., "The global domination number of a graph", J. Math. Phys. Sci., 23 no.5, (1989), 377-385.
Swaminathan, V. and Dharmalingam, K.M., "Degree Equitable Domination on Graphs", Kragujevac Journal of Mathematics, 35 no.1, (2011), 191-197.
Vaidya, S. K. and Vadhel, H. D., "Congruent Dominating Sets in Graph - A New Concept", Accepted for Publication in TWMS J. App. Eng. Math..
Vaidya, S. K. and Vadhel, H. D., "Congruent Domination Number of Regular Graphs and Trees" (Communicated for Publication).
West, D. B., Introduction to Graph Theory, Prentice-Hall of India Pvt. Ltd., (2006).