Main Article Content

Abstract

Let R be a commutative ring with multiplicative identity and C be a coassociative and counital R-coalgebra with the α-condition. A clean comodules defined based on the cleanness on rings and modules. A C-comodule M is a clean comodule if the endomorphism ring of C-comodule M is clean. A clean R-coalgebra C is a clean comodule over itself i.e., if the endomorphism ring of C as a C-comodule is clean. For an idempotent e ∈ R, there are relations between the cleanness of eRe and R. It’s motivated us to investigate this condition for coalgebra. For any C, we can construct the R-coalgebra e ⇀C↼e where e is an idempotent element of dual algebra of C. Here, we show that the clean conditions of C implies the clean property of e ⇀C↼ e and vice versa.

Keywords

coalgebra clean coalgebra clean comodule corner ring

Article Details

How to Cite
Puspita, N. P., Wijayanti, I. E., & Surodjo, B. (2022). The Necessary and Sufficient Condition of Clean R-Coalgebra e⇀C↼e. Journal of the Indonesian Mathematical Society, 28(2), 215–220. https://doi.org/10.22342/jims.28.2.1066.215-220

References

  1. Nicholson, W.K., ”Lifting Idempotents and Exchange Rings” Trans. Amer. Math. Soc., 229(1977) 269-278.
  2. Warfield Jr. R.B., ”Exchange rings and decompositions of modules” Math. Ann. 199 (1972) 31-36.
  3. Crawley, P., and J´onnson, B., ”Refinements for Infinite Direct Decompositions Algebraic System” Pacific J. Math., 14(3) (1964) 797-855.
  4. Camillo, V.P. and Yu, H.P., ”Exchange Rings, Units and Idempotents” Comm. Algebra, 22(12) (1994) 4737-4749.
  5. Han, J. and Nicholson, W.K., ”Extension of Clean Rings” Comm. Algebra 29(6) (2001) 2589-2595.
  6. Anderson, D.D. and Camillo, V.P., ”Commutative Rings Whose Element are a sum of a Unit and Idempotent”, Comm. Algebra 30(7) (2002) 3327-3336.
  7. Tousi, M. and Yassemi, S., ”Tensor Product of Clean Rings” Glasgow Math. J 47 (2005) 501–503.
  8. McGovern, W. Wm., ”Characterization of commutative clean rings” Int. J. Math. Game Theory Algebra 15(40) (2006) 403-413.
  9. Chen, H. and Chen, M., ”On Clean Ideals” IJMMS 62 (2002) 3949-3956.
  10. Nicholson, W.K and Varadarajan,K., ”Countable Linear Transformations are Clean” Proceedings of American Mathematical Socienty 126 (1998) 61-64.
  11. Nicholson, W.K., Varadarajan, K. and Zhou, Y., ”Clean Endomorphism Rings” Archiv der Mathematik 83 (2004) 340-343.
  12. Camillo, V.P., Khurana, D., Lam, T.Y., Nicholson, W.K. and Zhou, Y., ”Continous Modules are Clean” J. Algebra 304 (2006) 94-111.
  13. Camillo, V.P., Khurana, D., Lam, T.Y., Nicholson, W.K., and Zhou, Y., ”A Short Proof that Continous Modules are Clean” Contemporary Ring Theory 2011, Proceedings of the Sixth China-Japan-Korea International Conference on Ring Theory (2012) 165-169.
  14. Sweedler, M.E., Hopf Algebra, Mathematics Lecture Note Series, W.A. Benjamins, Inc., 1969
  15. Brzezi´nski, T. and Wisbauer, R., Corings and Comodules, Cambridge University Press, 2003.
  16. Puspita., N. P., Wijayanti., I.E., and Surodjo, B., ”Graded Modules as a Clean Comodule”, Journal of Mathematics Research 12(6) (2020) 66-73.
  17. Puspita., N. P., Wijayanti., I.E., and Surodjo, B., ”Clean Coalgebra and Clean Comodules from Finitely Generated Projective Modules” Algebra and Discrete Mathematics Journal 31(2) (2021).
  18. Lam, T.Y., Graduated Texts in Mathematics: Lectures on Modules and Rings, SpringerVerlag Inc., 1994