Equivalence of Lebesgue's Theorem and Baire Characterization Theorem
Abstract
Let $X$ be a complete separable metric space and $Y$ be a separable Banach space. We provide a proof of equivalence by linking explicitly the following statements:\\
\noindent \textbf{\textit{Lebesgue's Theorem.}} For every $\epsilon>0$ there exists a countable collection of closed sets $\left\lbrace C_n\right\rbrace $ of $X$ such that $$X=\bigcup_{n=1}^{\infty}C_n\;\;\text{and}\;\; \omega_f\left( C_n\right)<\epsilon\;\; \text{for each} \;\; n.$$
\textbf{\textit{Baire Characterization Theorem.}} For every nonempty perfect set $K\subset X$, the function $f|_K$ has at least one point of continuity in $K$. In fact, $C(f|_K)$ is dense in $K$.\\
\indent Moreover, replacing ``closed'' by ``open'' in the Lebesgue's Theorem, we obtain a characterization of continuous functions on space $X$.
Full text article
References
Baire, R., Sur les fonctions des variables reeles, Ann. Mat. Pura ed Appl., 3 (1899), 1122.
Bressoud, D. M., A Radical Approach To Lebesgues Theory of Integration, Cambridge University Press, United States of America, 2008.
Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron and Henstock, 4, American Mathematical Society, 1994.
Kuratowski, K., Topology, Academic Press, London, 1966.
Lee, P.Y., Tang, W.K., and Zhao, D., An equivalent Definition of Functions of the First Baire Class, Proc.Amer. Math. Soc., 129:8 (2001), 2273-2275
Authors
Copyright (c) 2022 Journal of the Indonesian Mathematical Society

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.