Main Article Content

Abstract

Let f be a map from V (G) to {0, 1, ..., k − 1} where k is an integer, 1 ≤ k ≤ |V (G)|. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if |vf (i) − vf (j)| ≤ 1, and |ef (i) − ef (j)| ≤ 1, i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef (x) denote the number of vertices and edges respectively labeled with x (x = 0, 1, ..., k − 1). In this paper, we investigate the k-product cordial behaviour of union of graphs

Keywords

cordial labeling product cordial labeling k-product cordial labeling.

Article Details

Author Biographies

K. Jeya Daisey, Department of Mathematics Holy Cross College Nagercoil, Tamilnadu, India.

Assistant Professor

Department of Mathematics

R. Santrin Sabibha, Research Scholar Register no.: 20212072092001 Manonmaniam Sundaranar University Tirunelveli, Tamilnadu, India.

Research Schoar

Department of Mathematics

P. Jeyanthi, Govindammal Aditaanr College for Women,Tiruchendur,Tamilnadu India

Principal and Head

Research Centre

Department of Mathematics

Maged Z. Youssef, Department of Mathematics Ain Shams University, Abbassia, Cairo, Egypt.

Associate Professor

Department of Mathematics

How to Cite
Jeya Daisey, K., Santrin Sabibha, R., Jeyanthi, P., & Youssef, M. Z. (2022). k-Product Cordial Behaviour of Union of Graphs. Journal of the Indonesian Mathematical Society, 28(1), 1–7. https://doi.org/10.22342/jims.28.1.1025.1-7

References

  1. Cahit I. , Cordial graphs: a weaker version of graceful and harmonious graphs,Ars Combin., 23 (1987), 201-207.
  2. Gallian J. A., A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 2020.
  3. Harary F. , Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
  4. Jeya Daisy K., Santrin Sabibha R. , Jeyanthi P. and Youssef Maged Z., k-Product cordial labeling of fan graphs, TWMS J. App. and Eng. Math., to appear.
  5. Jeya Daisy K., Santrin Sabibha R. , Jeyanthi P. and Youssef Maged Z., k-Product cordial labeling of cone graphs, preprint.
  6. Jeya Daisy K., Santrin Sabibha R. , Jeyanthi P. and Youssef Maged Z., Further results on k-product cordial labeling, preprint.
  7. Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P., and Youssef, M. Z., Further results on
  8. k-product cordial labeling, preprint.
  9. Jeyanthi P. and Maheswari A., 3-Product cordial labeling, SUT J. Math., 48(2) (2012), 231-240.
  10. Ponraj R. , Sivakumar M. and Sundaram M., k-product cordial labeling of graphs, Int. J. Contemp. Math. Sciences , Vol. 7, No. 15 (2012), 733 - 742.
  11. Rosa A., On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Sympos., ICC Rome (1966), Paris, Dunod, (1967), 349-355.
  12. Sundaram M., Ponraj R. and Somasundaram S., Product cordial labeling of graphs, Bulletin of Pure and Applied Sciences, 23E(1) (2004), 155-163.