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Abstract. In this paper, we analyse briefly some properties of hemi-slant sub-

manifold of (LCS)n-manifold. Here we discuss about some necessary and sufficient

conditions for distributions to be integrable and obtain some results in this direction.

We also study the geometry of leaves of hemi-slant submanifold of (LCS)n-manifold.

At last, we give an example of a hemi-slant submanifold of an (LCS)n-manifold.

Key words and Phrases: (LCS)n-manifold, hemi-slant submanifold, integrablity,
leaves of distribution.

1. INTRODUCTION

An n-dimensional Lorentzian manifold M̃ is a smooth connected paracom-
pact Hausdorff manifold with a Lorentzian metric g̃, that is M̃ admits a smooth
symmetric tensor field g̃ of type (0,2) such that for each point. the tensor g̃p :

TpM̃ × TpM̃ → R is a non-degenerate inner-product of signature (-,+,...,+), TpM̃

denotes the tangent vector space of M̃ at p and R is the real no. space. A non-zero
vector Xp ∈ TpM̃ is known to be spacelike, null or lightlike, or timelike according
as g̃p(Xp, Xp) > 0,= 0 or < 0 respectively.

If M̃ is a differentiable manifold of dimension n, and there exists a (φ, ξ, η)
structure satisfying

φ2 = I + η ⊗ ξ, η(ξ) = −1, φ(ξ) = 0, η ◦ φ = 0,
then M is called an almost paracontact manifold.

In an almost paracontact structure (φ, ξ, η, g̃),
g̃(X,φY ) = g̃(φX, Y ),
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2g(φX, Y ) = (∇̄Xη)Y + (∇̄Y η)X,

φ2X = X + η(X)ξ, η ◦ φ = 0, φ(ξ) = 0, η(ξ) = −1, (1.1)

where φ is a tensor of type (1,1), ξ is a vector field, η is a 1-form and g̃ is Lorentzian
metric satisfying

g̃(φX, φY ) = g̃(X,Y ) + η(X)η(Y ), g̃(X, ξ) = η(X) (1.2)

for all vector fields X,Y on M̃ .

In a Lorentzian manifold (M̃, g̃), a vector field P defined by g̃(X,P ) = A(X)

for any X ∈ Γ(TM̃), is called con-circular if
(∇̄XA)(Y ) = α{g̃(X,Y ) + ω(X)A(Y )},

where α is a non-zero scalar and ω is a closed 1-form and ∇̄ denotes the operator
of covariant differentiation of M̃ with respect to g̃.

Let M̃ admits a unit timelike concircular vector field ξ, called the structure
vector field of the manifold, then g̃(ξ, ξ) = −1, since ξ is a unit concircular vector
field, it follows that ∃ a non-zero 1-form η such that g̃(X, ξ) = η(X). The following
equations hold−

(∇̄Xη)Y = α[g̃(X,Y ) + η(X)η(Y )], α 6= 0,
∇̄Xα = Xα = dα(X) = ρη(X),

for all vector fields X,Y on M̃ and α is a non-zero scalar function related to ρ, by
ρ = −(ξα).

Let φX = 1
α∇̄Xξ, from which it follows that φ is a symmetric (1,1) tensor

and call it the structure tensor on the manifold. Thus the Lorentzian manifold
M̃ together with unit timelike concircular vector field ξ, its associated 1-form η
and a (1,1) tensor field φ is called a Lorentzian Concircular Structure manifold i.e.
(LCS)n-manifold. Specially, if α = 1, then we obtain LP-Sasakian structure of
Matsumoto [15]. In an (LCS)n-manifold (n > 2), the following relations hold−

φ2 = I + η ⊗ ξ, η(ξ) = −1,

where I denotes the identity transformation of the tangent space TM̃ ,

φξ = 0, η ◦ φ = 0, g̃(X,φY ) = g̃(φX, Y ), rankφ = 2n, (1.3)

g̃(φX, φY ) = g̃(X,Y ) + η(X)η(Y ), g̃(X, ξ) = η(X), (1.4)

R̄(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ] (1.5)

∀ X,Y ∈ TM̃ .

Also (LCS)n-manifold satisfies−

(∇̄Xφ)Y = α[g̃(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X], (1.6)

∇̄Xξ = αφX. (1.7)
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Let M be a submanifold of M̃ with (LCS)n-structure (φ, ξ, η, g̃) with induced
metric g and let ∇ is the induced connection on the tangent bundle TM and ∇⊥
is the induced connection on the normal bundle T⊥M of M .

The Gauss and Weingarten formulae are characterized by−
∇̃XY = ∇XY + h(X,Y ), (1.8)

∇̃XN = −ANX +∇⊥XN, (1.9)

∀ X,Y ∈ TM,N ∈ T⊥M,h is the 2nd fundamental form and AN is the Weingarten
mapping associated with N via

g(ANX,Y ) = g(h(X,Y ), N). (1.10)

The mean curvature H is given by

H =
1

k

k∑
i=1

h(ei, ei), (1.11)

where k is the dimension of M and {ei}ki=1 is the local orthonormal frame on M .

For any X ∈ Γ(TM),
φX = TX + FX, (1.12)

where TX is the tangential component and FX is the normal component of φX.

Similarly, for any V ∈ Γ(T⊥M),

φV = tV + fV, (1.13)

where tV, fV are the tangential component and the normal component of φV re-
spectively.

The covariant derivatives of the tensor fields T, F, t, f are defined as−
(∇XT )Y = ∇XTY − T∇XY, (1.14)

(∇XF )Y = ∇⊥XFY − F∇XY, (1.15)

(∇Xt)V = ∇XtV − t∇⊥XV, (1.16)

(∇Xf)V = ∇⊥XfV − f∇⊥XV (1.17)

∀ X,Y ∈ TM, V ∈ T⊥M.

A submanifold is called−
i) invariant if ∀ X ∈ Γ(TM), φX ∈ Γ(TM),
ii) anti-invariant if ∀ X ∈ Γ(TM), φX ∈ Γ(T⊥M),
iii) totally umbilical if h(X,Y ) = g(X,Y )H (1.18)
∀ X,Y ∈ Γ(TM), H is the mean curvature,
iv) totaly geodesic if h(X,Y ) = 0 ∀ X,Y ∈ Γ(TM),
v) minimal if H = 0 on M .
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Let M be a Riemannian manifold isometrically immersed in an almost contact
metric manifold (M̃, φ, ξ, η, g) and ξ be tangent to M . Then the tangent bundle
TM decomposes as TM = D⊕ < ξ >, where D is the orthogonal distribution to
ξ. Now for each non-zero vector X tangent to M at x, such that X is not propor-
tional to ξx, we denote the angle between φX and Dx by θ(X). M is called slant
submanifold if the angle θ(X) is constant, which is independent of the choice of
x ∈ M and X ∈ TxM− < ξx >. The constant angle θ ∈ [0, π2 ] is then called the

slant angle of M in M̃ . If θ = 0, then the submanifold is invariant, if θ = π
2 , then

the submanifold is anti-invariant and if θ 6= 0, π2 , then the submanifold is proper
slant.

According to A. Lotta [9], when M is a proper slant submanifold of M̃ with
slant angle θ, then ∀ X ∈ Γ(TM),

T 2(X) = −cos2θ(X − η(X)ξ). (1.19)

A. Carriazo [3] introduced hemi-slant submanifolds as a special case of bislant
submanifolds and he called them pseudo-slant submanifolds.

A submanifold M of an (LCS)n-manifold is called hemi-slant if there exist
two orthogonal distributions Dθ and D⊥ satisfying [5]−
i) TM = Dθ ⊕D⊥⊕ < ξ >,
ii) Dθ is a slant distribution with slant angle θ 6= π

2 ,

iii) D⊥ is totally real i.e., φD⊥ ⊆ T⊥M.

A hemi-slant submanifold is called proper if θ 6= 0, π2 .

CR-submanifolds and slant submanifolds are hemi-slant submanifolds with
slant angle θ = π

2 and Dθ = 0 respectively.

In the rest of this paper, we use M as a hemi-slant submanifold of an (LCS)n-

manifold M̃ . If we denote the dimensions of the distributions D⊥ and Dθ by m1,m2

respectively, then we have−
i) if m2 = 0, then M is anti-invariant,
ii) if m1 = 0, θ = 0, then M is invariant,
iii) if m1 = 0, θ 6= 0, then M is proper-slant with slant angle θ,
iv) if m1m2 6= 0, θ ∈ (0, π2 ), then M is proper hemi-slant.

Let M be hemi-slant submanifold of an (LCS)n-manifold M̃ , then for any
X ∈ TM ,

X = P1X + P2X + η(X)ξ, (1.20)

where P1, P2 are projection maps on the distributions D⊥, Dθ respectively. Now
operating φ on (1.20), we get

φX = φP1X + φP2X + η(X)φξ.
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Using (1.1) and (1.12), we obtain
TX + FX = FP1X + TP2X + FP2X.

On comparing, we get
TX = TP2X,

FX = FP1X + FP2X.

If we denote the orthogonal complement of φ(TM) in T⊥M by µ, then the
normal bundle T⊥M can be decomposed as

T⊥M = F (D⊥)⊕ F (Dθ)⊕ < µ > . (1.21)

Since F (D⊥) and F (Dθ) are orthogonal distributions, g(X,Y ) = 0 for eachX ∈ D⊥
and Y ∈ Dθ. Hence by (1.5) and (1.12), we have

∀ Z ∈ D⊥,W ∈ Dθ, g(FZ,FW ) = g(φZ, φW ) = g(Z,W ) = 0,
which shows that F (D⊥), F (Dθ) are mutually perpendicular. So, (1.21) is an or-
thogonal direct decomposition.

There are various types of works done on hemi-slant submanifolds. H. I.
Abutuqayqah worked on geometry of hemi-slant submanifolds of almost contact
manifolds [1]. M. A. Khan et al. discussed about totally umbilical hemi-slant
submanifolds of Kahler manifolds [2] and of cosymplectic manifolds [4], and they
also discussed about a classification on totally umbilical proper slant and hemi-
slant submanifolds of a nearly trans-Sasakian manifold [6]. B. Laha et al. studied
totally umbilical hemi-slant submanifolds of LP-Sasakian manifold [7] and hemi-
slant submanifold of Kenmotsu manifold [10]. H. M. Tastan et al. discussed about
hemi-slant submanifolds of a locally product Riemannian manifold [12] and of a
locally conformal Kahler manifold [13]. Another important works on hemi-slant
submanifolds were done by A. Lotta in 1996 [9], by M. A. Lone et al. in 2016 [8]
and by M. S. Siddesha et al. in 2018 [11]. Motivated from these works, in this
paper, we analyse some properties regarding distributions and leaves of hemi-slant
submanifold of (LCS)n-manifold.

2. MAIN RESULTS

In this section, we discuss about some necessary and sufficient conditions for
distributions to be integrable and obtain some results in this direction. We also
study the geometry of leaves of hemi-slant submanifold of (LCS)n-manifold.

Theorem 2.1. Let M be a hemi-slant submanifold of an (LCS)n-manifold M̃ ,
then ∀ Z,W ∈ D⊥, AφWZ = AφZW − αη(W )Z − αη(Z)W − 2αη(Z)η(W )ξ.

Proof. On using (1.10), we have

g(AφWZ,X) = g(h(Z,X), φW ) = g(φh(Z,X),W ) = g(φ∇̃XZ,W )− g(φ∇XZ,W )
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= g(φ∇̃XZ,W ) = g(∇̃XφZ,W )− g((∇̃Xφ)Z,W ).

Again using (1.6) and (1.9), we get
g(AφWZ,X) = g(AφZX +∇⊥XφZ,W )− αg(g(X,Z)ξ + 2η(X)η(Z)ξ + η(Z)X,W )
= g(AφZX,W )− αg(X,Z)η(W )− 2αη(X)η(Z)η(W )− αη(Z)g(X,W )
= g(h(W,X), φZ)− αg(X,Z)η(W )− αη(Z)g(X,W )− 2αη(X)η(Z)η(W )
= g(AφZW − αη(W )Z − αη(Z)W − 2αη(Z)η(W )ξ,X)
⇒ AφWZ = AφZW − αη(W )Z − αη(Z)W − 2αη(Z)η(W )ξ.

Theorem 2.2. Let M be a hemi-slant submanifold of an (LCS)n-manifold M̃ .
Then the distribution Dθ⊕D⊥ is integrable if and only if g([X,Y ], ξ) = 0 ∀ X,Y ∈
Dθ ⊕D⊥.

Proof. For X,Y ∈ Dθ ⊕D⊥,
g([X,Y ], ξ) = g(∇̃XY, ξ)− g(∇̃YX, ξ)
= −g(∇̃Xξ, Y ) + g(∇̃Y ξ,X)
= −g(αφX, Y ) + g(αφY,X)
= 0. (by (1.4))

Since TM = Dθ ⊕D⊥⊕ < ξ >, therefore [X,Y ] ∈ Dθ ⊕D⊥. So, Dθ ⊕D⊥ is
integrable.

Conversely, let Dθ ⊕ D⊥ is integrable. Then ∀ X,Y ∈ Dθ ⊕ D⊥, [X,Y ] ∈
Dθ ⊕D⊥. As TM = Dθ ⊕D⊥⊕ < ξ >, therefore g([X,Y ], ξ) = 0.

Theorem 2.3. Let M be a hemi-slant submanifold of an (LCS)n-manifold M̃ .
Then the anti-invariant distribution D⊥ is integrable if and only if ∀ W ∈ D⊥,W
is a scalar multiple of ξ.

Proof. For Z,W ∈ D⊥, from (1.6), we have

(∇̃Zφ)W = α[g(Z,W )ξ + 2η(Z)η(W )ξ + η(W )Z]. (2.1)

After some calculations and using (1.12), (1.13), we get
−AFWZ +∇⊥ZFW − T∇ZW − F∇ZW − th(Z,W )− fh(Z,W ) = α[g(Z,W )ξ
+2η(Z)η(W )ξ+η(W )Z]. (2.2)

Comparing tangential components, we have
−AFWZ−T∇ZW−th(Z,W ) = α[g(Z,W )ξ+2η(Z)η(W )ξ+η(W )Z]. (2.3)

Interchanging Z,W , we obtain
−AFZW−T∇WZ−th(W,Z) = α[g(W,Z)ξ+2η(W )η(Z)ξ+η(W )Z]. (2.4)

Subtracting (2.3) from (2.4) and using the fact that h is symmetric, we have
AFWZ−AFZW+T (∇ZW−∇WZ) = α[η(Z)W−η(W )Z]. (2.5)
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From (2.5), we have

AFWZ −AFZW + T ([Z,W ]) = α[η(Z)W − η(W )Z]. (2.6)

Now D⊥ is integrable if and only if [Z,W ] ∈ D⊥ and as D⊥ is anti-invariant,
φD⊥ ⊆ T⊥M and so, T [Z,W ] = 0.

Hence from (2.6), D⊥ is integrable if and only ifAFWZ−AFZW = α[η(Z)W−
η(W )Z].

From Theorem 2.1, we have as TW = 0 = TZ,
AφWZ −AφZW = −αη(W )Z − αη(Z)W − 2αη(Z)η(W )ξ
⇒ α[η(Z)W − η(W )Z] = −αη(W )Z − αη(Z)W − 2αη(Z)η(W )ξ
⇒ 2αη(Z)W + 2αη(Z)η(W )ξ = 0
⇒ η(Z)W + η(Z)η(W )ξ = 0
⇒W + η(W )ξ = 0. Hence the result is proved.

Theorem 2.4. Let M be a hemi-slant submanifold of an (LCS)n-manifold M̃ .
Then the slant distribution Dθ is integrable if and only if ∀ X,Y ∈ Dθ,

P1(∇XTY −∇Y TX) = α[η(Y )P1X − η(X)P1Y ]. (2.7)

Proof. We denote by P1, P2 the projections on D⊥, Dθ respectively. ∀ X,Y ∈ Dθ,
we have from (1.6),

(∇̃Xφ)Y = α[g̃(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X]. (2.8)

On applying (1.8), (1.9), (1.12), (1.13), we have

(∇̃Xφ)Y = ∇XTY +h(X,TY )−AFYX+∇XFY − (T∇XY +F∇XY )− (th(X,Y )
+fh(X,Y )) = α[g(X,Y )ξ+2η(X)η(Y )ξ+η(Y )X]. (2.9)

Comparing tangential components, we get
∇XTY −AFYX−T∇XY − th(X,Y ) = α[g(X,Y )ξ+2η(X)η(Y )ξ+η(Y )X]. (2.10)

Interchanging X,Y in (2.10) and subtracting the resultant from (2.10), we
obtain
∇XTY −∇Y TX−AFYX+AFXY −T∇XY +T∇YX = α[η(Y )X−η(X)Y ]. (2.11)

Since X,Y ∈ Dθ, FX = 0 = FY , applying P1 to both sides of (2.11), we
have

P1(∇XTY −∇Y TX) = α[η(Y )P1X − η(X)P1Y ].

Theorem 2.5. Let M be a hemi-slant submanifold of an (LCS)n-manifold M̃ . If
the leaves of D⊥ are totally geodesic in M , then ∀ X ∈ Dθ and Z,W ∈ D⊥,

g(h(Z,X), FW ) + g(th(Z,W ), X) = 0. (2.12)
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Proof. From (1.6), (1.8), (1.9), we have
∇ZφW + h(Z, φW )−AFWZ +∇⊥ZFW − φ∇ZW − φh(Z,W )
= α[g(Z,W )ξ + 2η(W )η(Z)ξ + η(W )Z].

Comparing tangential components and on taking inner product with X ∈ Dθ,
we obtain

−g(AFWZ,X)− g(th(Z,W ), X)− g(T∇ZW,X) = 0.

The leaves of D⊥ are totally geodesic in M if for Z,W ∈ D⊥,∇ZW ∈ D⊥.
So, T∇ZW = 0.

Thus g(AFWZ,X) + g(th(Z,W ), X) = 0.

Example. Now we give an example of a hemi-slant submanifold of an (LCS)n-

manifold.

Let M̃(R9, φ, ξ, η, g) denote the manifold R9 with the (LCS)-structure given
by−
ξ = 3 ∂

∂z , η = 1
3 (−dz +

∑4
i=1 b

idai),

g = 1
9

∑4
i=1(dai ⊗ dai ⊕ dbi ⊗ dbi)− η ⊗ η,

φ( ∂∂z ) = 0, φ( ∂
∂ai ) = ∂

∂bi , i = 1, 2, 3, 4, and

φ( ∂
∂bi ) = ∂

∂ai for i = 1, 2 and φ( ∂
∂bi ) = − ∂

∂ai for i = 3, 4,

where (a1, a2, a3, a4, b1, b2, b3, b4, z) ∈ R9.

Let us consider a 5-dimensional submanifold M of M̃ defined by

(a1, a2, a3, a4, b1, b2, b3, b4, z) 7→ (cosαa1 + sinαa2, cosβb1 + sinβb2, a
3−b3√

3
, a

4−b4√
3
, 3z).

Then it can be easily proved that M is a hemi-slant submanifold of M̃ by
choosing the slant distribution Dθ =< e1, e2 > with slant angle |α − β| and the
totally real distribution D⊥ =< e3, e4 >, where e1 = sinα ∂

∂a1 − cosα
∂
∂a2 , e2 =

sinβ ∂
∂b1 − cosβ ∂

∂b2 , e3 = ∂
∂a3 + ∂

∂b3 , e4 = ∂
∂a4 + ∂

∂b4 such that {e1, e2, e3, e4, ξ}
forms an orthogonal frame on TM so that TM = Dθ ⊕D⊥⊕ < ξ >.

Acknowledgement. The first author is the corresponding author and has been
sponsored by University Grants Commission (UGC) Junior Research Fellowship,
India. UGC-Ref. No.: 1139/(CSIR-UGC NET JUNE 2018). The authors would
like to thank the referee for the valuable suggestions to improve the paper.



Hemi-Slant Submanifold of (LCS)n-Manifold 83

REFERENCES

[1] Abutuqayqah, H.I., Geometry of hemi-slant submanifolds of almost contact manifolds, King

Abdulaziz University, 2012.

[2] Al-Solamy, F.R., Khan, M.A., and Uddin, S., Totally umbilical hemi-slant submanifolds of
Kahler manifold, Abstr. Appl. Anal., (2011).

[3] Carriazo, A., New developments in slant submanifold theory, Narosa Publishing House, New

Delhi, 2002.
[4] Khan, M.A., Totally umbilical hemi-slant submanifolds of cosymplectic manifolds, Math.

Aeterna, 3:8 (2013), 645-653.

[5] Khan, M.A., Singh, K., and Khan, V.A., Slant-submanifold of LP-contact manifolds, Differ.
Geom. Dyn. Syst., 12 (2010), 102-108.

[6] Khan, M.A., Uddin, S., and Singh, K., A classification on totally umbilical proper slant and

hemi-slant submanifolds of a nearly trans-Sasakian manifold, Differ. Geom. Dyn. Syst., 13
(2011), 117-127.

[7] Laha, B. and Bhattacharyya, A., Totally umbilical hemi-slant submanifolds of LP-Sasakian
manifold, Lobachevskii J. Math., 36:2 (2015), 127-131.

[8] Lone, M.A., Lone, M.S., and Shahid, M.H., Hemi-slant submanifolds of cosymplectic mani-

folds, Cogent Math. Stat., 3:1 (2016), 1204143.
[9] Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roum. (N.S),

39 (1996), 183-198.

[10] Patra, C., Laha, B., and Bhattacharyya, A., On hemi-slant submanifold of Kenmotsu mani-
fold, Int. J. Math. Comb., 1 (2019), 62-72.

[11] Siddesha, M.S., Bagewadi, C.S., and Venkatesha, S., On the geometry of hemi-slant subman-

ifolds of LP-cosymplectic manifold, Asian J. Math. Appl., (2018).
[12] Tastan, H.M., and Ozdemir, F., The geometry of hemi-slant submanifolds of a locally product

Riemannian manifold, Turk. J. Math., 39:2 (2015), 268-284.

[13] Tastan, H.M., and Gerdan, S., Hemi-slant submanifolds of a locally conformal Kahler mani-
fold, Int. Electron. J. Geom., 8:2 (2015), 46-56.


