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Abstract. The physico-chemical characteristics of molecules are theoretically ex-

plored using the theory of graphs and mathematical chemistry. A graph’s topological

index is a numerical value derived from the graph mathematically. The Gourava

and hyper-Gourava indices of various cactus chains are determined in this study.
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1. INTRODUCTION

A molecular graph, also known as a chemical graph, is a graph in which
the atoms are represented by the vertices, while the bonds are represented by the
edges. Topological indices are numeric quantities obtained from a molecular graph
that correlate the molecular graph’s physico-chemical characteristics and have been
shown to be beneficial in isomer discrimination, QSAR and QSPR analysis.

Only simple, finite, connected graphs with V (G) as vertex set and E(G) as
edge set are considered throughout this study. The degree dG(a) of a vertex a is
the number of vertices adjacent to a.

A cactus graph is a connected graph in which no edge lies in more than one
cycle. Every cactus graph cycle is chordless, and every cactus graph block is either
an edge or a cycle. A cactus graph is said to be triangular if all of its blocks are
triangular. A triangular cactus graph is described as a chain triangular cactus if
all of its triangles have at most two cut-vertices and each cut-vertice is shared by
precisely two triangles. A square cactus graph is a type of cactus graph and all of
its blocks are square. A square cactus graph is said to be a chain square cactus
if all of its squares have at most two cut-vertices and each cut-vertice is shared
by precisely two squares. It’s worth noting that the internal squares’ connections
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to their neighbours may vary. A chain square cactus is called ortho-chain square
cactus if the cut-vertices are nearby. A para-chain square cactus is one in which the
cut-vertices are not contiguous in a chain square cactus. The Gourava and hyper-
Gourava indices of various generic ortho and para cactus chains are studied in this
paper, and particular situations such as the triangular chain cactus Tn, ortho-chain
square cactus On, and para-chain square cactus Qn are considered. Latest investi-
gations on several cactus chains can be found in [1, 3, 13, 14] and references cited
therein. For undefined terms and notations refer to [5].

The first and second Gourava indices of a molecular graph were introduced
by Kulli [6] and are defined as:

GO1(G) =
∑

ab∈E(G)

[
(dG(a) + dG(b)) + dG(a)dG(b)

]
,

GO2(G) =
∑

ab∈E(G)

[(
dG(a) + dG(b)

)(
dG(a)dG(b)

)]
.

Kulli proposed the first and second hyper-Gourava indices of a molecular
graph G in [7], and they are defined as

HGO1(G) =
∑

ab∈E(G)

[
dG(a) + dG(b) + dG(a)dG(b)

]2
,

HGO2(G) =
∑

ab∈E(G)

[(
dG(a) + dG(b)

)(
dG(a)dG(b)

)]2
.

Several topological indices were investigated. For further information, see [2, 4, 8,
9, 10, 11, 12].

2. MAIN RESULTS

We look at two types of cactus chains in this section: the para cacti chain
and the ortho cacti chain of cycles. We start with a para cacti chain of length
n cycles Cm, where each block is a cycle Cm. Let Cn

m be the symbol for it. We
compute an exact expression of GO1, GO2, HGO1 and HGO2 of Cn

m in the following
theorem.

Table 1. Partitioning at the edge of Cn
m.

dCn
m

(a), dCn
m

(b) : ab ∈ E(Cn
m) (2, 2) (2, 4)

Edge count mn− 4n + 4 4(n− 1)

Theorem 2.1. For a para cacti chain of cycles Cn
m (m ≥ 4, n ≥ 2),

1. GO1(Cn
m) = 8[mn + 3(n− 1)].
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2. GO2(Cn
m) = 16[mn + 8(n− 1)].

3. HGO1(Cn
m) = 16[4mn + 33(n− 1)].

4. HGO2(Cn
m) = 256[mn + 32(n− 1)].

Proof. 1. By utilizing the definition of GO1 and entries in Table 1, we have

GO1(Cn
m) =

∑
ab∈E(Cn

m)

[(
dCn

m
(a) + dCn

m
(b)
)

+
(
dCn

m
(a)dCn

m
(b)
)]

= (mn− 4n + 4)(4 + 4) + 4(n− 1)(2 + 4 + 8)

= 8[mn + 3(n− 1)].

2. By making use the definition of GO2 and values in Table 1, we have

GO2(Cn
m) =

∑
ab∈E(Cn

m)

[(
dCn

m
(a) + dCn

m
(b)
)(
dCn

m
(a)dCn

m
(b)
)]

= (mn− 4n + 4)(4× 4) + 4(n− 1)(6× 8)

= 16[mn + 8(n− 1)].

3. By the usage of the definition of HGO1 and facts in table 1, we have

HGO1(Cn
m) =

∑
ab∈E(Cn

m)

[(
dCn

m
(a) + dCn

m
(b)
)

+
(
dCn

m
(a)dCn

m
(b)
)]2

= (mn− 4n + 4)(4 + 4)2 + 4(n− 1)(6 + 8)2

= 16[4mn + 33(n− 1)].

4. By using the concept of HGO2 as well as the data in Table 1, we have

HGO2(Cn
m) =

∑
ab∈E(Cn

m)

[(
dCn

m
(a) + dCn

m
(b)
)(
dCn

m
(a)dCn

m
(b)
)]2

= (mn− 4n + 4)(4× 4)2 + 4(n− 1)(6× 8)2

= 256[mn + 32(n− 1)].

�

The graph Qn is pictured in Figure 1.

Corollary 2.2. For a para-chain square cactus graph Qn(n ≥ 2),

1. GO1(Qn) = 8(7n− 3).
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Figure 1. The graph Qn.

2. GO2(Qn) = 3n3 + 9n2 + 60n.
3. HGO1(Qn) = 16(49n− 33).
4. HGO2(Qn) = 1024(9n− 8).

Proof. Replace m = 4 in Theorem 2.1 to complete the proof. �

The graph Ln is indicated in Figure 2.
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Figure 2. The graph Ln.

Corollary 2.3. For a para-chain hexagonal cactus graph Ln(n ≥ 3),

1. GO1(Ln) = 24(3n− 1).
2. GO2(Ln) = 32(7n− 4).
3. HGO1(Ln) = 16(57n− 33).
4. HGO2(Ln) = 512(19n− 16).

Proof. We get the required outcome if we set m = 6 in the Theorem 2.1. �

The ortho-chain cacti of cycles with neighbouring cut-vertices is now con-
sidered. Let COn

m be an ortho-chain cactus graph, where m is the cycle length
and n is the chain length. |V (COn

m)| = mn − n + 1 and |E(COn
m)| = mn are

self-evident. GO1, GO2, HGO1 and HGO2 of COn
m are obtained by utilizing the

following theorem.

Table 2. Partitioning at the edge of COn
m.

dCOn
m

(a), dCOn
m

(b) : ab ∈ E(COn
m) (2, 2) (2, 4) (4, 4)

Edge count mn− 3m + 2 2n n− 1

Theorem 2.4. For a ortho cacti chain of cycles COn
m(m ≥ 3, n ≥ 2),

1. GO1(COn
m) = 8mn− 24m + 52n− 8.
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2. GO2(COn
m) = 16mn− 48m + 224n− 96.

3. HGO1(COn
m) = 64mn− 192m + 968n− 448.

4. HGO2(COn
m) = 256mn− 768m + 20992n− 15872.

Proof. 1. By using the concept of GO1 as well as the data in Table 2, we have

GO1(COn
m) =

∑
ab∈E(COn

m)

[(
dCOn

m
(a) + dCOn

m
(b)
)

+
(
dCOn

m
(a)dCOn

m
(b)
)]

= (mn− 3m + 2)(4 + 4) + 2n(6 + 8) + (n− 1)(8 + 16)

= 8mn− 24m + 52n− 8.

2. By making use the definition of GO2 and values in Table 2, we have

GO2(COn
m) =

∑
ab∈E(COn

m)

[(
dCOn

m
(a) + dCOn

m
(b)
)

+
(
dCOn

m
(a)dCOn

m
(b)
)]

= (mn− 3m + 2)(4× 4) + 2n(6× 8) + (n− 1)(8× 16)

= 16mn− 48m + 224n− 96.

3. By utilizing the description of HGO1 and entries in Table 2, we have

HGO1(COn
m) =

∑
ab∈E(COn

m)

[(
dCOn

m
(a) + dCOn

m
(b)
)

+
(
dCOn

m
(a)dCOn

m
(b)
)]2

= (mn− 3m + 2)(4 + 4)2 + 2n(6 + 8)2 + (n− 1)(8 + 16)2

= 64mn− 192m + 968n− 448.

4. By the usage of the definition of HGO2 and facts in table 2, we have

HGO2(COn
m) =

∑
ab∈E(COn

m)

[(
dCOn

m
(a) + dCOn

m
(b)
)

+
(
dCOn

m
(a)dCOn

m
(b)
)]2

= (mn− 3m + 2)(4× 4)2 + 2n(6× 8)2 + (n− 1)(8× 16)2

= 256mn− 768m + 20992n− 15872.

�

Then, as illustrated in Figure 3, we consider a chain triangular cactus, des-
ignated by Tn, where n is the length of the Tn. For m = 3, Tn is a special case of
COn

m.
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Figure 3. The graph Tn.

Corollary 2.5. For a chain triangular cactus Tn(n ≥ 2),

1. GO1(Tn) = 76n− 80.
2. GO2(Tn) = 272n− 240.
3. HGO1(Tn) = 1160n− 1024.
4. HGO2(Tn) = 21760n− 18176.

Proof. Replace m = 3 in Theorem 2.4 to complete the proof. �
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Figure 4. The graph On.

Corollary 2.6. For the ortho-chain square cactus On(n ≥ 2),

1. GO1(On) = 84n− 104.
2. GO2(On) = 288(n− 1).
3. HGO1(On) = 1224n− 1216.
4. HGO2(On) = 22016n− 18944.

Proof. We get the required outcome if we set m = 4 in the Theorem 2.4. �

By identifying every node of Km with a node of one Ky, the graph Q(m, y)
is formed from Km and m copies of Ky. GO1, GO2, HGO1 and HGO2 of Q(m, y)
are computed in the following theorem. Figure 5 depicts the graph Q(m, y).

Table 3. Partitioning at the edge of Q(m, y).

dQ(m,y)(a), dQ(m,y)(b) : ab ∈ E(Q(m, y)) Edge count

(y − 1, y − 1) m(y−1)(y−2)
2

(y − 1,m + y − 2) m(y − 1)

(m + y − 2,m + y − 2) m(y−1)
2

Theorem 2.7. For a ortho-chain Q(m, y)(m, y ≥ 2),
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Figure 5. The graph Q(m, y).

1. GO1(Q(m, y)) = m(y−1)(y−2)(y2−1)
2 + m(y − 1)(y2 + ym− y − 1)

+ m(y−1)(m+y−2)(m+y)
2 .

2. GO2(Q(m,n)) = m(y − 1)4(y − 2) + m(y − 1)[(2y2 − 9y + 13) + m(5−m)
+ my(3y + m− 8)− 6] + m(y − 1)[(m + y − 2)3].

3. HGO1(Q(m, y)) = m(y−1)(y−2)(y2−1)2
2 + m(y − 1)(y2 + ym− y − 1)2

+ m(y−1)(m+y−2)(m+y)2

2 .

4. HGO2(Q(m, y)) = 2m(y − 1)[(y − 1)6(y − 2) + (m + y − 2)6]
+ m(n− 1)[(m + 2y − 3)(y − 1)(m + y − 2)]2.

Proof. 1. By using the concept of GO1 as well as the data in Table 3, we have

GO1(Q(m, y)) =
∑

ab∈E(Q(m,y))

[(
dQ(m,y)(a) + dQ(m,y)(b)

)
+
(
dQ(m,y)(a)dQ(m,y)(b)

)]
=

m(y − 1)(y − 2)(y2 − 1)

2
+ m(y − 1)(y2 + ym− y − 1)

+
m(y − 1)(m + y − 2)(m + y)

2
.

2. By utilizing the description of GO2 and entries in Table 3, we have

GO2(Q(m,n)) =
∑

ab∈E(Q(m,n))

[(
dQ(m,y)(a) + dQ(m,y)(b)

)(
dQ(m,y)(a)dQ(m,y)(b)

)]
= m(y − 1)4(y − 2) + m(n− 1)[(2y2 − 9y + 13) + m(5−m)

+my(3y + m− 8)− 6] + m(y − 1)[(m + y − 2)3].

3. By the usage of the definition of HGO1 and facts in Table 3, we have
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HGO1(Q(m, y)) =
∑

ab∈E(Q(m,y))

[(
dQ(m,y)(a) + dQ(m,y)(b)

)
+
(
dQ(m,y)(a)dQ(m,y)(b)

)]2
=

m(y − 1)(y − 2)(y2 − 1)2

2
+ m(y − 1)(y2 + ym− n− 1)2

+
m(y − 1)(m + y − 2)(m + y)2

2
.

4. By making use the definition of HGO2 and values in Table 3, we have

HGO2(Q(m, y)) =
∑

ab∈E(Q(m,y))

[(
dQ(m,y)(a) + dQ(m,y)(b)

)(
dQ(m,y)(a)dQ(m,y)(b)

)]2
= 2m(y − 1)7(y − 2) + m(y − 1)[(m + 2y − 3)(y − 1)(m + y − 2)]2

+2m(y − 1)(m + y − 2)6.

The join of each cycle of length m ≥ 3 and a new vertex in Cn
m. That is

(Cm +K1). We term it a wheel chain. Wn
m is the symbol for it. GO1, GO2, HGO1

and HGO2 of Wn
m are derived in the following theorem.

b

b

b

b

b

b

b

b

b

b

b b b

b

b

bbb b b b

Figure 6. The graph Wn
4 .

Table 4. Partitioning at the edge of Wn
m.

dWn
m

(a), dWn
m

(b) : ab ∈ E(Wn
m) Edge count

(3, 3) mn− 4n + 4
(3, 6) 4(n− 1)
(3,m) mn− 2n + 2
(6,m) 2(n− 1)

Theorem 2.8. For wheel chain Wn
m (m ≥ 3, n ≥ 2),

1. GO1(Wn
m) = 4m2n + 24mn + 54n− 6m− 54.

2. GO2(Wn
m) = 3m3n + 15m2n− 6m2 + 108mn + 432n− 54m− 432.

3. HGO1(Wn
m) = 16m3n + 354nm + 2070n + 90m2n− 66m2 − 120m− 2070.

4. HGO2(Wn
m) = 9nm5 + 108nm4 + 837nm3 + 2430nm2 − 72m4 − 864m3

− 2592m2 + 2916nm + 93312n− 93312.



Gourava and hyper-Gourava indices of some cactus chains 305

Proof. 1. By making use the definition of GO1 and values in Table 4, we have

GO1(Wn
m) =

∑
ab∈E(Wn

m)

[(
dWn

m
(a) + dWn

m
(b)
)

+
(
dWn

m
(a)dWn

m
(b)
)]

= (mn− 4n + 4)[6 + 9] + 4(n− 1)[9 + 18]

+(mn− 2n + 2)[3 + m + 3m] + 2(n− 1)[6 + m + 6m]

= 4m2n + 24mn + 54n− 6m− 54.

2. By the usage of the definition of GO2 and facts in Table 4, we have

GO2(Wn
m) =

∑
ab∈E(Wn

m)

[(
dWn

m
(a) + dWn

m
(b)
)(
dWn

m
(a)dWn

m
(b)
)]

= (mn− 4n + 4)[6× 9] + 4(n− 1)[9× 18]

+(mn− 2n + 2)[(3 + m)3m] + 2(n− 1)[(6 + m)6m]

= 3m3n + 15m2n− 6m2 + 108mn + 432n− 54m− 432.

3. By using the expression for HGO1 and data in Table 4, we have

HGO1(Wn
m) =

∑
ab∈E(Wn

m)

[(
dWn

m
(a) + dWn

m
(b)
)

+
(
dWn

m
(a)dWn

m
(b)
)]2

= (mn− 4n + 4)[6 + 9]2 + 4(n− 1)[9 + 18]2

+(mn− 2n + 2)[3 + m + 3m]2 + 2(n− 1)[6 + m + 6m]2

= 16m3n + 354nm + 2070n + 90m2n− 66m2 − 120m− 2070.

4. By utilizing the description of HGO2 and entries in Table 4, we have

HGO2(Wn
m) =

∑
ab∈E(Wn

m)

[(
dWn

m
(a) + dWn

m
(b)
)(
dWn

m
(a)dWn

m
(b)
)]

= (mn− 4n + 4)[6× 9]2 + 4(n− 1)[9× 18]2

+(mn− 2n + 2)[(3 + m)3m]2 + 2(n− 1)[(6 + m)6m]2

= 9nm5 + 108nm4 + 837nm3 + 2430nm2 − 72m4 − 864m3 − 2592m2

+2916nm + 93312n− 93312.

�

3. COMPARATIVE ANALYSIS

The plotting of GO1, GO2, HGO1 and HGO2 for the cactus graphs are
shown in Figures 7 and 8. We have built the figures using Origin software tak-
ing m=4. GO1(Cn

m), GO1(Cn
m), GO1(COn

m), GO1(Wn
m), GO2(Cn

m), GO2(COn
m),

GO2(Wn
m), HGO1(Cn

m), HGO1(COn
m), HGO1(Wn

m), HGO2(Cn
m), HGO2(COn

m)
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Figure 7. Plot of GO1(left) and GO2(right) for cactus chains.

Figure 8. Plot of HGO1(left) and HGO2(right) for cactus chains.

and HGO2(Wn
m) are linearly increasing and GO1(Q(m, y)), GO2(Q(m, y)), HGO1

(Q(m, y)) and HGO2(Q(m, y)) are exponentially increasing.

4. CONCLUDING REMARKS

In this paper, para cactus chain, ortho cactus chain and wheel cactus chain
are discussed and explicit expressions of GO1, GO2, HGO1 and HGO2 are derived
for them.
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