GOURAVA AND HYPER-GOURAVA INDICES OF SOME CACTUS CHAINS

B. BASAVANAGOUD ${ }^{1}$ AND SHRUTI POLICEPATIL ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Karnatak University Dharwad - 580003 Karnataka, India
${ }^{1}$ b.basavanagoud@gmail.com
${ }^{2}$ shrutipatil300@gmail.com

Abstract

The physico-chemical characteristics of molecules are theoretically explored using the theory of graphs and mathematical chemistry. A graph's topological index is a numerical value derived from the graph mathematically. The Gourava and hyper-Gourava indices of various cactus chains are determined in this study.

Key words and Phrases: Gourava indices, hyper-Gourava indices, cactus chains.

1. INTRODUCTION

A molecular graph, also known as a chemical graph, is a graph in which the atoms are represented by the vertices, while the bonds are represented by the edges. Topological indices are numeric quantities obtained from a molecular graph that correlate the molecular graph's physico-chemical characteristics and have been shown to be beneficial in isomer discrimination, QSAR and QSPR analysis.

Only simple, finite, connected graphs with $V(G)$ as vertex set and $E(G)$ as edge set are considered throughout this study. The degree $d_{G}(a)$ of a vertex a is the number of vertices adjacent to a.

A cactus graph is a connected graph in which no edge lies in more than one cycle. Every cactus graph cycle is chordless, and every cactus graph block is either an edge or a cycle. A cactus graph is said to be triangular if all of its blocks are triangular. A triangular cactus graph is described as a chain triangular cactus if all of its triangles have at most two cut-vertices and each cut-vertice is shared by precisely two triangles. A square cactus graph is a type of cactus graph and all of its blocks are square. A square cactus graph is said to be a chain square cactus if all of its squares have at most two cut-vertices and each cut-vertice is shared by precisely two squares. It's worth noting that the internal squares' connections

[^0]to their neighbours may vary. A chain square cactus is called ortho-chain square cactus if the cut-vertices are nearby. A para-chain square cactus is one in which the cut-vertices are not contiguous in a chain square cactus. The Gourava and hyperGourava indices of various generic ortho and para cactus chains are studied in this paper, and particular situations such as the triangular chain cactus T_{n}, ortho-chain square cactus O_{n}, and para-chain square cactus Q_{n} are considered. Latest investigations on several cactus chains can be found in $[1,3,13,14]$ and references cited therein. For undefined terms and notations refer to [5].

The first and second Gourava indices of a molecular graph were introduced by Kulli [6] and are defined as:

$$
\begin{aligned}
& G O_{1}(G)=\sum_{a b \in E(G)}\left[\left(d_{G}(a)+d_{G}(b)\right)+d_{G}(a) d_{G}(b)\right], \\
& G O_{2}(G)=\sum_{a b \in E(G)}\left[\left(d_{G}(a)+d_{G}(b)\right)\left(d_{G}(a) d_{G}(b)\right)\right] .
\end{aligned}
$$

Kulli proposed the first and second hyper-Gourava indices of a molecular graph G in [7], and they are defined as

$$
\begin{aligned}
H G O_{1}(G) & =\sum_{a b \in E(G)}\left[d_{G}(a)+d_{G}(b)+d_{G}(a) d_{G}(b)\right]^{2} \\
H G O_{2}(G) & =\sum_{a b \in E(G)}\left[\left(d_{G}(a)+d_{G}(b)\right)\left(d_{G}(a) d_{G}(b)\right)\right]^{2}
\end{aligned}
$$

Several topological indices were investigated. For further information, see $[2,4,8$, $9,10,11,12]$.

2. MAIN RESULTS

We look at two types of cactus chains in this section: the para cacti chain and the ortho cacti chain of cycles. We start with a para cacti chain of length n cycles C_{m}, where each block is a cycle C_{m}. Let C_{m}^{n} be the symbol for it. We compute an exact expression of $G O_{1}, G O_{2}, H G O_{1}$ and $H G O_{2}$ of C_{m}^{n} in the following theorem.

Table 1. Partitioning at the edge of C_{m}^{n}.

$d_{C_{m}^{n}}(a), d_{C_{m}^{n}}(b): a b \in E\left(C_{m}^{n}\right)$	$(2,2)$	$(2,4)$
Edge count	$m n-4 n+4$	$4(n-1)$

Theorem 2.1. For a para cacti chain of cycles $C_{m}^{n}(m \geq 4, n \geq 2)$,

1. $G O_{1}\left(C_{m}^{n}\right)=8[m n+3(n-1)]$.
2. $G O_{2}\left(C_{m}^{n}\right)=16[m n+8(n-1)]$.
3. $H G O_{1}\left(C_{m}^{n}\right)=16[4 m n+33(n-1)]$.
4. $H G O_{2}\left(C_{m}^{n}\right)=256[m n+32(n-1)]$.

Proof. 1. By utilizing the definition of $G O_{1}$ and entries in Table 1, we have

$$
\begin{aligned}
G O_{1}\left(C_{m}^{n}\right) & =\sum_{a b \in E\left(C_{m}^{n}\right)}\left[\left(d_{C_{m}^{n}}(a)+d_{C_{m}^{n}}(b)\right)+\left(d_{C_{m}^{n}}(a) d_{C_{m}^{n}}(b)\right)\right] \\
& =(m n-4 n+4)(4+4)+4(n-1)(2+4+8) \\
& =8[m n+3(n-1)] .
\end{aligned}
$$

2. By making use the definition of $G O_{2}$ and values in Table 1, we have

$$
\begin{aligned}
G O_{2}\left(C_{m}^{n}\right) & =\sum_{a b \in E\left(C_{m}^{n}\right)}\left[\left(d_{C_{m}^{n}}(a)+d_{C_{m}^{n}}(b)\right)\left(d_{C_{m}^{n}}(a) d_{C_{m}^{n}}(b)\right)\right] \\
& =(m n-4 n+4)(4 \times 4)+4(n-1)(6 \times 8) \\
& =16[m n+8(n-1)] .
\end{aligned}
$$

3. By the usage of the definition of $H G O_{1}$ and facts in table 1 , we have

$$
\begin{aligned}
H G O_{1}\left(C_{m}^{n}\right) & =\sum_{a b \in E\left(C_{m}^{n}\right)}\left[\left(d_{C_{m}^{n}}(a)+d_{C_{m}^{n}}(b)\right)+\left(d_{C_{m}^{n}}(a) d_{C_{m}^{n}}(b)\right)\right]^{2} \\
& =(m n-4 n+4)(4+4)^{2}+4(n-1)(6+8)^{2} \\
& =16[4 m n+33(n-1)] .
\end{aligned}
$$

4. By using the concept of HGO_{2} as well as the data in Table 1, we have

$$
\begin{aligned}
H G O_{2}\left(C_{m}^{n}\right) & =\sum_{a b \in E\left(C_{m}^{n}\right)}\left[\left(d_{C_{m}^{n}}(a)+d_{C_{m}^{n}}(b)\right)\left(d_{C_{m}^{n}}(a) d_{C_{m}^{n}}(b)\right)\right]^{2} \\
& =(m n-4 n+4)(4 \times 4)^{2}+4(n-1)(6 \times 8)^{2} \\
& =256[m n+32(n-1)]
\end{aligned}
$$

The graph Q_{n} is pictured in Figure 1.
Corollary 2.2. For a para-chain square cactus graph $Q_{n}(n \geq 2)$,

1. $G O_{1}\left(Q_{n}\right)=8(7 n-3)$.

Figure 1. The graph Q_{n}.
2. $G O_{2}\left(Q_{n}\right)=3 n^{3}+9 n^{2}+60 n$.
3. $H G O_{1}\left(Q_{n}\right)=16(49 n-33)$.
4. $H G O_{2}\left(Q_{n}\right)=1024(9 n-8)$.

Proof. Replace $m=4$ in Theorem 2.1 to complete the proof.
The graph L_{n} is indicated in Figure 2.

Figure 2. The graph L_{n}.

Corollary 2.3. For a para-chain hexagonal cactus graph $L_{n}(n \geq 3)$,

1. $G O_{1}\left(L_{n}\right)=24(3 n-1)$.
2. $G O_{2}\left(L_{n}\right)=32(7 n-4)$.
3. $H G O_{1}\left(L_{n}\right)=16(57 n-33)$.
4. $H G O_{2}\left(L_{n}\right)=512(19 n-16)$.

Proof. We get the required outcome if we set $m=6$ in the Theorem 2.1.
The ortho-chain cacti of cycles with neighbouring cut-vertices is now considered. Let $C O_{m}^{n}$ be an ortho-chain cactus graph, where m is the cycle length and n is the chain length. $\left|V\left(C O_{m}^{n}\right)\right|=m n-n+1$ and $\left|E\left(C O_{m}^{n}\right)\right|=m n$ are self-evident. $G O_{1}, G O_{2}, H G O_{1}$ and $H G O_{2}$ of $C O_{m}^{n}$ are obtained by utilizing the following theorem.

Table 2. Partitioning at the edge of $C O_{m}^{n}$.

$d_{C O_{m}^{n}}(a), d_{C O_{m}^{n}}(b): a b \in E\left(C O_{m}^{n}\right)$	$(2,2)$	$(2,4)$	$(4,4)$
Edge count	$m n-3 m+2$	$2 n$	$n-1$

Theorem 2.4. For a ortho cacti chain of cycles $\mathrm{CO}_{m}^{n}(m \geq 3, n \geq 2)$,

1. $G O_{1}\left(C O_{m}^{n}\right)=8 m n-24 m+52 n-8$.
2. $G O_{2}\left(C O_{m}^{n}\right)=16 m n-48 m+224 n-96$.
3. $H G O_{1}\left(C O_{m}^{n}\right)=64 m n-192 m+968 n-448$.
4. $\mathrm{HGO}_{2}\left(C O_{m}^{n}\right)=256 m n-768 m+20992 n-15872$.

Proof. 1. By using the concept of $G O_{1}$ as well as the data in Table 2, we have

$$
\begin{aligned}
G O_{1}\left(C O_{m}^{n}\right) & =\sum_{a b \in E\left(C O_{m}^{n}\right)}\left[\left(d_{C O_{m}^{n}}(a)+d_{C O_{m}^{n}}(b)\right)+\left(d_{C O_{m}^{n}}(a) d_{C O_{m}^{n}}(b)\right)\right] \\
& =(m n-3 m+2)(4+4)+2 n(6+8)+(n-1)(8+16) \\
& =8 m n-24 m+52 n-8
\end{aligned}
$$

2. By making use the definition of $G O_{2}$ and values in Table 2, we have

$$
\begin{aligned}
G O_{2}\left(C O_{m}^{n}\right) & =\sum_{a b \in E\left(C O_{m}^{n}\right)}\left[\left(d_{C O_{m}^{n}}(a)+d_{C O_{m}^{n}}(b)\right)+\left(d_{C O_{m}^{n}}(a) d_{C O_{m}^{n}}(b)\right)\right] \\
& =(m n-3 m+2)(4 \times 4)+2 n(6 \times 8)+(n-1)(8 \times 16) \\
& =16 m n-48 m+224 n-96 .
\end{aligned}
$$

3. By utilizing the description of $H G O_{1}$ and entries in Table 2, we have

$$
\begin{aligned}
H G O_{1}\left(C O_{m}^{n}\right) & =\sum_{a b \in E\left(C O_{m}^{n}\right)}\left[\left(d_{C O_{m}^{n}}(a)+d_{C O_{m}^{n}}(b)\right)+\left(d_{C O_{m}^{n}}(a) d_{C O_{m}^{n}}(b)\right)\right]^{2} \\
& =(m n-3 m+2)(4+4)^{2}+2 n(6+8)^{2}+(n-1)(8+16)^{2} \\
& =64 m n-192 m+968 n-448 .
\end{aligned}
$$

4. By the usage of the definition of HGO_{2} and facts in table 2, we have

$$
\begin{aligned}
H G O_{2}\left(C O_{m}^{n}\right) & =\sum_{a b \in E\left(C O_{m}^{n}\right)}\left[\left(d_{C O_{m}^{n}}(a)+d_{C O_{m}^{n}}(b)\right)+\left(d_{C O_{m}^{n}}(a) d_{C O_{m}^{n}}(b)\right)\right]^{2} \\
& =(m n-3 m+2)(4 \times 4)^{2}+2 n(6 \times 8)^{2}+(n-1)(8 \times 16)^{2} \\
& =256 m n-768 m+20992 n-15872 .
\end{aligned}
$$

Then, as illustrated in Figure 3, we consider a chain triangular cactus, designated by T_{n}, where n is the length of the T_{n}. For $m=3, T_{n}$ is a special case of $C O_{m}^{n}$.

Figure 3. The graph T_{n}.
Corollary 2.5. For a chain triangular cactus $T_{n}(n \geq 2)$,

1. $G O_{1}\left(T_{n}\right)=76 n-80$.
2. $G O_{2}\left(T_{n}\right)=272 n-240$.
3. $H G O_{1}\left(T_{n}\right)=1160 n-1024$.
4. $\mathrm{HGO}_{2}\left(T_{n}\right)=21760 n-18176$.

Proof. Replace $m=3$ in Theorem 2.4 to complete the proof.

Figure 4. The graph O_{n}.

Corollary 2.6. For the ortho-chain square cactus $O_{n}(n \geq 2)$,

1. $G O_{1}\left(O_{n}\right)=84 n-104$.
2. $G O_{2}\left(O_{n}\right)=288(n-1)$.
3. $H G O_{1}\left(O_{n}\right)=1224 n-1216$.
4. $H G O_{2}\left(O_{n}\right)=22016 n-18944$.

Proof. We get the required outcome if we set $m=4$ in the Theorem 2.4.
By identifying every node of K_{m} with a node of one K_{y}, the graph $Q(m, y)$ is formed from K_{m} and m copies of $K_{y} . G O_{1}, G O_{2}, H G O_{1}$ and $H G O_{2}$ of $Q(m, y)$ are computed in the following theorem. Figure 5 depicts the graph $Q(m, y)$.

Table 3. Partitioning at the edge of $Q(m, y)$.

$d_{Q(m, y)}(a), d_{Q(m, y)}(b): a b \in E(Q(m, y))$	Edge count
$(y-1, y-1)$	$\frac{m(y-1)(y-2)}{2}$
$(y-1, m+y-2)$	$m(y-1)$
$(m+y-2, m+y-2)$	$\frac{m(y-1)}{2}$

Theorem 2.7. For a ortho-chain $Q(m, y)(m, y \geq 2)$,

Figure 5. The graph $Q(m, y)$.

1. $G O_{1}(Q(m, y))=\frac{m(y-1)(y-2)\left(y^{2}-1\right)}{2}+m(y-1)\left(y^{2}+y m-y-1\right)$

$$
+\frac{m(y-1)(m+y-2)(m+y)}{2}
$$

2. $G O_{2}(Q(m, n))=m(y-1)^{4}(y-2)+m(y-1)\left[\left(2 y^{2}-9 y+13\right)+m(5-m)\right.$

$$
+m y(3 y+m-8)-6]+m(y-1)\left[(m+y-2)^{3}\right]
$$

3. $H G O_{1}(Q(m, y))=\frac{m(y-1)(y-2)\left(y^{2}-1\right)^{2}}{2}+m(y-1)\left(y^{2}+y m-y-1\right)^{2}$

$$
+\frac{m(y-1)(m+y-2)(m+y)^{2}}{2}
$$

4. $H G O_{2}(Q(m, y))=2 m(y-1)\left[(y-1)^{6}(y-2)+(m+y-2)^{6}\right]$

$$
+m(n-1)[(m+2 y-3)(y-1)(m+y-2)]^{2}
$$

Proof. 1. By using the concept of $G O_{1}$ as well as the data in Table 3, we have

$$
\begin{aligned}
G O_{1}(Q(m, y))= & \sum_{a b \in E(Q(m, y))}\left[\left(d_{Q(m, y)}(a)+d_{Q(m, y)}(b)\right)+\left(d_{Q(m, y)}(a) d_{Q(m, y)}(b)\right)\right] \\
= & \frac{m(y-1)(y-2)\left(y^{2}-1\right)}{2}+m(y-1)\left(y^{2}+y m-y-1\right) \\
& +\frac{m(y-1)(m+y-2)(m+y)}{2}
\end{aligned}
$$

2. By utilizing the description of $G O_{2}$ and entries in Table 3, we have

$$
\begin{aligned}
G O_{2}(Q(m, n))= & \sum_{a b \in E(Q(m, n))}\left[\left(d_{Q(m, y)}(a)+d_{Q(m, y)}(b)\right)\left(d_{Q(m, y)}(a) d_{Q(m, y)}(b)\right)\right] \\
= & m(y-1)^{4}(y-2)+m(n-1)\left[\left(2 y^{2}-9 y+13\right)+m(5-m)\right. \\
& +m y(3 y+m-8)-6]+m(y-1)\left[(m+y-2)^{3}\right] .
\end{aligned}
$$

3. By the usage of the definition of $H G O_{1}$ and facts in Table 3, we have

$$
\begin{aligned}
H G O_{1}(Q(m, y))= & \sum_{a b \in E(Q(m, y))}\left[\left(d_{Q(m, y)}(a)+d_{Q(m, y)}(b)\right)+\left(d_{Q(m, y)}(a) d_{Q(m, y)}(b)\right)\right]^{2} \\
= & \frac{m(y-1)(y-2)\left(y^{2}-1\right)^{2}}{2}+m(y-1)\left(y^{2}+y m-n-1\right)^{2} \\
& +\frac{m(y-1)(m+y-2)(m+y)^{2}}{2}
\end{aligned}
$$

4. By making use the definition of $H G O_{2}$ and values in Table 3 , we have

$$
\begin{aligned}
H G O_{2}(Q(m, y))= & \sum_{a b \in E(Q(m, y))}\left[\left(d_{Q(m, y)}(a)+d_{Q(m, y)}(b)\right)\left(d_{Q(m, y)}(a) d_{Q(m, y)}(b)\right)\right]^{2} \\
= & 2 m(y-1)^{7}(y-2)+m(y-1)[(m+2 y-3)(y-1)(m+y-2)]^{2} \\
& +2 m(y-1)(m+y-2)^{6} .
\end{aligned}
$$

The join of each cycle of length $m \geq 3$ and a new vertex in C_{m}^{n}. That is $\left(C_{m}+K_{1}\right)$. We term it a wheel chain. W_{m}^{n} is the symbol for it. $G O_{1}, G O_{2}, H G O_{1}$ and HGO_{2} of W_{m}^{n} are derived in the following theorem.

Figure 6. The graph W_{4}^{n}.

Table 4. Partitioning at the edge of W_{m}^{n}.

$d_{W_{m}^{n}}(a), d_{W_{m}^{n}}(b): a b \in E\left(W_{m}^{n}\right)$	Edge count
$(3,3)$	$m n-4 n+4$
$(3,6)$	$4(n-1)$
$(3, m)$	$m n-2 n+2$
$(6, m)$	$2(n-1)$

Theorem 2.8. For wheel chain $W_{m}^{n}(m \geq 3, n \geq 2)$,

1. $G O_{1}\left(W_{m}^{n}\right)=4 m^{2} n+24 m n+54 n-6 m-54$.
2. $G O_{2}\left(W_{m}^{n}\right)=3 m^{3} n+15 m^{2} n-6 m^{2}+108 m n+432 n-54 m-432$.
3. $H G O_{1}\left(W_{m}^{n}\right)=16 m^{3} n+354 n m+2070 n+90 m^{2} n-66 m^{2}-120 m-2070$.
4. $\mathrm{HGO}_{2}\left(W_{m}^{n}\right)=9 n m^{5}+108 n m^{4}+837 n m^{3}+2430 n m^{2}-72 m^{4}-864 m^{3}$
$-2592 m^{2}+2916 n m+93312 n-93312$.

Proof. 1. By making use the definition of $G O_{1}$ and values in Table 4, we have

$$
\begin{aligned}
G O_{1}\left(W_{m}^{n}\right)= & \sum_{a b \in E\left(W_{m}^{n}\right)}\left[\left(d_{W_{m}^{n}}(a)+d_{W_{m}^{n}}(b)\right)+\left(d_{W_{m}^{n}}(a) d_{W_{m}^{n}}(b)\right)\right] \\
= & (m n-4 n+4)[6+9]+4(n-1)[9+18] \\
& +(m n-2 n+2)[3+m+3 m]+2(n-1)[6+m+6 m] \\
= & 4 m^{2} n+24 m n+54 n-6 m-54 .
\end{aligned}
$$

2. By the usage of the definition of $G O_{2}$ and facts in Table 4, we have

$$
\begin{aligned}
G O_{2}\left(W_{m}^{n}\right)= & \sum_{a b \in E\left(W_{m}^{n}\right)}\left[\left(d_{W_{m}^{n}}(a)+d_{W_{m}^{n}}(b)\right)\left(d_{W_{m}^{n}}(a) d_{W_{m}^{n}}(b)\right)\right] \\
= & (m n-4 n+4)[6 \times 9]+4(n-1)[9 \times 18] \\
& +(m n-2 n+2)[(3+m) 3 m]+2(n-1)[(6+m) 6 m] \\
= & 3 m^{3} n+15 m^{2} n-6 m^{2}+108 m n+432 n-54 m-432 .
\end{aligned}
$$

3. By using the expression for $H G O_{1}$ and data in Table 4, we have

$$
\begin{aligned}
H G O_{1}\left(W_{m}^{n}\right)= & \sum_{a b \in E\left(W_{m}^{n}\right)}\left[\left(d_{W_{m}^{n}}(a)+d_{W_{m}^{n}}(b)\right)+\left(d_{W_{m}^{n}}(a) d_{W_{m}^{n}}(b)\right)\right]^{2} \\
= & (m n-4 n+4)[6+9]^{2}+4(n-1)[9+18]^{2} \\
& +(m n-2 n+2)[3+m+3 m]^{2}+2(n-1)[6+m+6 m]^{2} \\
= & 16 m^{3} n+354 n m+2070 n+90 m^{2} n-66 m^{2}-120 m-2070 .
\end{aligned}
$$

4. By utilizing the description of HGO_{2} and entries in Table 4, we have

$$
\begin{aligned}
H G O_{2}\left(W_{m}^{n}\right)= & \sum_{a b \in E\left(W_{m}^{n}\right)}\left[\left(d_{W_{m}^{n}}(a)+d_{W_{m}^{n}}(b)\right)\left(d_{W_{m}^{n}}(a) d_{W_{m}^{n}}(b)\right)\right] \\
= & (m n-4 n+4)[6 \times 9]^{2}+4(n-1)[9 \times 18]^{2} \\
& +(m n-2 n+2)[(3+m) 3 m]^{2}+2(n-1)[(6+m) 6 m]^{2} \\
= & 9 n m^{5}+108 n m^{4}+837 n m^{3}+2430 n m^{2}-72 m^{4}-864 m^{3}-2592 m^{2} \\
& +2916 n m+93312 n-93312 .
\end{aligned}
$$

3. COMPARATIVE ANALYSIS

The plotting of $G O_{1}, G O_{2}, H G O_{1}$ and $H G O_{2}$ for the cactus graphs are shown in Figures 7 and 8. We have built the figures using Origin software taking $\mathrm{m}=4$. $G O_{1}\left(C_{m}^{n}\right), G O_{1}\left(C_{m}^{n}\right), G O_{1}\left(C O_{m}^{n}\right), G O_{1}\left(W_{m}^{n}\right), G O_{2}\left(C_{m}^{n}\right), G O_{2}\left(C O_{m}^{n}\right)$, $G O_{2}\left(W_{m}^{n}\right), H G O_{1}\left(C_{m}^{n}\right), H G O_{1}\left(C O_{m}^{n}\right), H G O_{1}\left(W_{m}^{n}\right), H G O_{2}\left(C_{m}^{n}\right), H G O_{2}\left(C O_{m}^{n}\right)$

Figure 7. Plot of $G O_{1}$ (left) and $G O_{2}$ (right) for cactus chains.

Figure 8. Plot of $H G O_{1}$ (left) and HGO_{2} (right) for cactus chains.
and $\mathrm{HGO}_{2}\left(W_{m}^{n}\right)$ are linearly increasing and $G O_{1}(Q(m, y)), G O_{2}(Q(m, y)), H G O_{1}$ $(Q(m, y))$ and $\mathrm{HGO}_{2}(Q(m, y))$ are exponentially increasing.

4. CONCLUDING REMARKS

In this paper, para cactus chain, ortho cactus chain and wheel cactus chain are discussed and explicit expressions of $G O_{1}, G O_{2}, H G O_{1}$ and $H G O_{2}$ are derived for them.

REFERENCES

[1] Alikhani, S., Jahari, S., Mehryar, M. and Hasni, R., Counting the number of dominating sets of cactus chains, Opt. Adv. Mat. Rapid Commun., 8(9-10) (2014), 955-960.
[2] Basavanagoud, B. and Policepatil, S., Chemical applicability of Gourava and hyper-Gourava indices, Nanosystems: Physics, Chemistry, Mathematics, 12(2) (2021), 142-150.
[3] De, N., General Zagreb index of some cactus chains, Open Journal of Discrete Applied Mathematics, 2(1) (2019), 24-31.
[4] Gutman, I. and Trinajstić, N., Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (4) (1972), 535-538.
[5] Harary, F., Graph Theory, Addison-Wesely, Reading Mass, 1969.
[6] Kulli, V. R., The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017), 33-38.
[7] Kulli, V. R., On hyper-Gourava indices and coindices, International Journal of Mathematical Archieve, 8(12) (2017), 116-120.
[8] Kulli, V. R., The Product connectivity Gourava index, Journal of Computer and Mathematical Science, 8(6) (2017), 235-242.
[9] Kulli, V. R., On the sum connectivity Gourava index, International Journal of Mathematical Archieve, 8(6) (2017), 211-217.
[10] Kulli, V. R., Computation of some Gourava indices of titania nanotubes, Intern. J. Fuzzy Mathematical Archieve, 12(2) (2017), 75-81.
[11] Kulli, V. R., Some Gourava indices and inverse sum indeg index of certain networks, International Research Journal of Pure Algebra, 7(7) (2017), 787-798.
[12] Mirajkar, K. G., and Pooja, B., On Gourava indices of some chemical graphs, International Journal of Applied Engineering Research, 14(3) (2019), pp. 743-749.
[13] Sadeghieh, A., Alikhani, S., Ghanbari N., and Khalaf, A. J. M., Hosoya polynomial of some cactus chains, Cogent Mathematics and statistics, 4(1), 1305638.
[14] Sadeghieh, A., Ghanbari, N., and Alikhani, S., Computation of Gutman index of some cactus chains, Electron. J. Graph Theory Appl., 6(1) (2018), 138-151.

[^0]: 2020 Mathematics Subject Classification: 05C07, 05C09.
 Received: 25-02-2021, accepted: 28-08-2021.

