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Abstract. This paper introduces new parameters called induced vertex stress and

total induced vertex stress in G, respectively. For graphs G and H, aspects of the

maximum and minimum total induced vertex stress that can be obtained by 1-edge

addition and 2-vertex merging are discussed.
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1. Introduction

It is assumed that the reader is familiar with the general notation and con-
cepts in graphs. See [1, 2, 6]. Only finite, connected and undirected simple graphs
will be considered throughout this paper.
In 1953, the researcher Alfonso Shimbel [4] introduced the notion of vertex stress
in a graph G denoted by SG(v), v ∈ V (G) (see [4]). Recall that the vertex stress
of vertex v ∈ V (G) is the number of times v is contained as an internal vertex in
all the shortest paths between all pairs of distinct vertices in V (G)\v. Formally
stated, SG(v) =

∑
u6=w 6=v 6=u

σ(v) where σ(v) is the number of shortest paths between

vertices u,w with v an internal vertex. The total vertex stress of G is given by
S(G) =

∑
v∈V (G)

SG(v). For graph G of order n, the average vertex stress of G de-

noted by S(G) follows naturally as S(G) = 1
n

∑
v∈V (G)

SG(v). At present the authors
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are only aware of two papers in which the notion of vertex stress has been furthered.
See [3, 5].
In [3] the notion of the induced vertex stress by v1 on each of vi, i = 2, 3, 4, . . . , vn
on a path v1v2v3 · · · vn was introduced. The induced vertex stress by v1 is given
by, ∫v1(vi) = n − i. Therefore, the total vertex stress induced by v1 equals,

sPn
(v1) =

∑
vj∈V (Pn),j 6=1

∫v1(vj) = (n−1)(n−2)
2 . We now generalize this notion for

a graph G.

Definition 1.1. Let V (G) = {vi : 1 ≤ i ≤ n} and for the ordered vertex pair
(vi, vj) let there be kG(i, j) distinct shortest paths of length lG(i, j) from vi to vj.

Then, sG(vi) =
n∑

j=1,j 6=i

kG(i, j)(`G(i, j)− 1).

It naturally follows that the total induced vertex stress of graph G is s(G) =
n∑

i=1

sG(vi). Since we account for the shortest paths between an ordered vertex pair

it follows that s(G) is even. Therefore, an even number of vertices vi may exist
for which sG(vi) is an odd value. The aforesaid reminds of the classical result with
regards to the number of vertices with odd degree. We also have a useful result
which links this notion to the parameter of total vertex stress in the graph G.

Theorem 1.2. For a graph G of order n ≥ 1 we have s(G) = 2S(G).

Proof. Definition 1.1 implies that for a specific shortest P = (vi, vj)-path the sum∑
(vi internal vertex on P )

SP (vt) is a term in calculating sG(vi). Because a vertex

pair (vi, vj) is an ordered pair, it follows that for the specific inverse (vj , vi)-path,
the same term is recounted. Hence, throughout the graph G, each value SG(vi),
i = 1, 2, 3, . . . , n is counted twice. Therefore, the result s(G) = 2S(G). �

Theorem 1.2 implies that for a stress regular graph [5], sG(vi) = 2SG(vi),
vi ∈ V (G). We are now ready to move to the main sections of this paper.
The study focuses on the addition of an edge between two graphs as well as the
merging of two vertices. Though the graph operations seem trivial, they reveal
a complicated change in the total induced vertex stress. An important analytical
application is found amongst others, in the field of mathematical chemistry. Many
compound chemical structures are simply the addition of an edge between pairwise
principle molecules (or nuclei) or chained molecules.

2. Total induced vertex stress of type 1 barbell-like graphs

Recall that a barbell graph is a graph obtained by taking two copies of Cn,
n ≥ 3 and joining them with an edge. This idea can be generalized by joining any
two graphs G and H with an edge. This family of graphs (infinitely many) is called
the Type 1 barbell-like graphs. By convention, if ui ∈ V (G) and vj ∈ V (H) then
joining the graphs with edge uivj will be denoted by G H(ui, vj) or equivalently
by H  G(vj , ui).
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Theorem 2.1. For graphs G and H of order n and m respectively, and ui ∈ V (G),
vj ∈ V (H) and kG(t, i) the number of distinct shortest (ut, ui)-paths from ut to ui
in G and similarly, kH(t, j) the number of distinct shortest (vt, vj)-paths in H it
follows that,

s(G H(ui, vj)) = s(G) + s(H) + 2[sG(ui) +

n∑
t=1,t6=i

kG(t, i)] · [
m∑

s=1,s 6=j

kH(s, j) + 1]

+2[sH(vj) +

m∑
s=1,s6=j

kH(s, j)] · [
n∑

t=1,t6=i

kG(t, i) + 1].

Proof. For the purpose of this proof we first prove the one-way partial result i.e.
the total induced vertex stress from V (G) to V (H). We say that vertex ut in-
duces vertex stress on transiting to vertex vs along all the shortest (ut, vs)-paths,
t = 1, 2, 3, . . . , n and s = 1, 2, 3, . . . ,m.
(a) For the ordered vertex pairs (ui, vs), s = 1, 2, 3, . . . ,m the vertex ui induces

total vertex stress of
m∑

s=1,s6=j

kH(s, j) + sH(vj).

(b) Consider any specific vertex ut ∈ V (G)\ui. For the ordered vertex pairs (ut, vs),
s = 1, 2, 3, . . . ,m the vertex ut induces a total of vertex stress of kG(t, i) · [(`G(t, i) ·

m∑
s=1,s 6=j

kH(s, j)+
m∑

s=1,s6=j

kH(s, j)+sH(vj)]+kG(t, i)`G(t, i). Hence, ∀ ut ∈ V (G)\ui

the total induced vertex stress is given by
n∑

t=1,t6=i

kG(t, i)`G(t, i) · [
m∑

s=1,s6=j

kH(s, j) +

1] +
n∑

t=1,t6=i

kG(t, i)[
m∑

s=1,s 6=j

kH(s, j) + sH(vj)]. Thus, the one-way partial result i.e.

the total induced vertex stress from V (G) to V (H) is given by,
m∑

s=1,s 6=j

kH(s, j)+sH(vj)+[sG(ui)+
n∑

t=1,t6=i

kG(t, i)]·[1+
m∑

s=1,s6=j

kH(s, j)]+
n∑

t=1,t6=i

kG(t, i)·

[
m∑

s=1,s6=j

kH(s, j) + sH(vj)]. For all inverse (vj , ui)-paths the total vertex stress in-

duced by V (H) to V (G) is given by,
n∑

t=1,t6=i

kG(t, i)+sG(ui)+[sH(vj)+
m∑

s=1,s 6=j

kH(s, j)]·[1+
n∑

t=1,t6=i

kG(t, i)]+
m∑

s=1,s 6=j

kH(s, j)·

[
n∑

t=1,t6=i

kG(t, i) + sG(ui)]. In addition we have the values s(G) and s(H) to begin

with. Adding all parts and simplifying yield the result. �

A more complex graph can now be addressed. Consider the graphs Hi, 1 ≤
i ≤ ` and let G = ((((H1  H2(ui, vj))  H3(vt, ws))  · · · )  H`(yq, zr)). Put
differently, for graphs Hi, i = 1, 2, 3, . . . , ` and G1 = H1  H2(u, v), u ∈ V (H1),
v ∈ V (H2) let, Gj = Gj−1  Hj+1(u, v), u ∈ V (Gj−1), v ∈ V (Hj+1) and 2 ≤
j ≤ ` − 1. The result from Theorem 2.1 can be applied to recursively determine
the total induced vertex stress. However, with each recursive step the vertex stress
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induced by each vertex must be updated accordingly. The next corollary from the
proof of Theorem 2.1, provides these new values.

Corollary 2.2. In the graph Q = G H(ui, vj) we have:

(a) sQ(ui) = sG(ui) + sH(vj) +
m∑

s=1,s6=j

kH(s, j).

(b) sQ(ut)t 6=i = sG(ut) + kG(t, i)`G(t, i)[1 +
m∑

s=1,s6=j

kH(s, j)] + kG(t, i)[sH(vj) +

m∑
s=1,s6=j

kH(s, j)], t = 1, 2, 3, . . . , n, t 6= i.

(c) sQ(vj) = sH(vj) + sG(ui) +
n∑

t=1,t6=i

kG(t, i).

(d) sQ(vs)s6=j = sH(vs) + kH(s, j)`H(s, j)[1 +
n∑

t=1,t6=i

kG(t, i)] + kH(s, j)[sG(ui) +

n∑
t=1,t6=i

kG(t, i)], s = 1, 2, 3, . . . ,m, s 6= j.

2.1. Maximum and minimum total induced vertex stress. Note that in the
result of Theorem 2.1, the terms s(G) and s(H) are constants whilst all other
terms may vary by the choice of ui, vj . This observation suggests that over all such
distinct pairwise choices, the parameter s(G  H(ui, vj)) will attain a maximum
and a minimum value.

Theorem 2.3. Let graph G be of order n ≥ 1. If degG(ui) ≤ degG(uj) then
sG(ui) ≥ sG(uj).

Proof. For n = 1, 2, 3, 4 and up to isomorphism, there are only 1, 1, 2 and 6 con-
nected simple graphs respectively. It is easy to verify that the result holds for order
1 ≤ n ≤ 4. Now consider any connected simple graph of order n ≥ 5. Since,
any such graph G is a subgraph of Kn we may begin with Kn and through iter-
ative deletion of an edge at a time, reconstruct G. For Kn the result holds since
degKn

(vi) = δ(Kn), ∀ vi ∈ V (Kn).
Without loss of generality let V (G) = {ui : 1 ≤ i ≤ n} such that degG(u1) ≤
degG(u2) ≤ · · · ≤ degG(un). Pair the vertices ui and vi in a one-on-one associa-
tion. The vertices vj which associate with the closed neighborhood N [ui] will be
denoted by NG[vi]. By convention ι(vj) = j. Begin with v1 and from V (Kn)\N [v1]
select the smallest ι(vk1

) and delete edge v1vk1
. Clearly, vertices v1, vk1

each in-
duce a total of vertex stress equal to n − 2. Hence, for Q1,1 = Kn − v1vk1

we
have sQ1,1

(v1) = sQ1,1
(vk1

) = n − 2 and sQ1,1
(vt) = 0, ∀ vt, t 6= 1, k1. Thus

the result holds for Kn − v1vk1 . Now consider (V (Kn)\N [v1])\vk1 and select the
smallest ι(vk2). Delete the edge v1vk2 . Clearly in Q1,2 = Kn − {v1vk1 , v1vk2}
the induced vertex stress is given by sQ1,2

(v1) = 2(n − 3), sQ1,2
(vk1

) = (n − 3),
sQ1,2

(vk2
) = (n− 3) and sQ1,2

(vt) = 0, ∀ vt, t 6= 1, k1, k2. Therefore result holds for
Kn − {v1vk1

, v1vk2
}. Repeat the procedure until degQ1,r

(v1) = degG(u1). Clearly
the results holds.
Consider v2. If degQ1,r (v2) = degG(u2) the results holds.
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If degQ1,r(v2) > degG(u2), follow the described procedure to delete edges. When
degQ2,q

(v2) = degG(u2) is reached, then two possibilities exist. Firstly, if degG(u1) <
degG(u2), then sQ2,q (v1) ≥ sQ2,q (v2). Secondly, if degG(u1) = degG(u2) then
sQ2,q (v1) ≤ sQ2,q (v2). However, for both cases the result holds i.e. for v1 or v2
since both, degG(u1) = degG(u2) = δ(G). Through immediate induction, the re-
sult holds for G of order n. Since G and n were random, it follows by imbedded
induction that the result i.e. if degG(ui) ≤ degG(uj) then sG(ui) ≥ sG(uj) holds
for all graphs G of order n ≥ 1.

�

For the application of Theorem 2.3, we note specific interpretations. For a
graph G of order n ≥ 1 it follows that:
(a) There exists a vertex ui ∈ V (G) such that degG(ui) = δ(G) and sG(ui) =
max{sG(uj) : uj ∈ V (G)}.
(b) There exists a vertex ui ∈ V (G) such that degG(ui) = ∆(G) and sG(ui) =
min{sG(uj) : uj ∈ V (G)}.
Note that (b) is a corollary from Theorem 2.3 which the reader may prove formally.
Consider the sets X = {ui : sG(ui) is a maximum in G} and Y = {uj : sG(uj) is a
minimum in G}.

Lemma 2.4. For a graph G of order n ≥ 1 let kG(i, j) be the number of distinct
shortest (ui, uj)-paths, 1 ≤ j 6=i ≤ n of length `G(i, j). It follows that:

(a) There exists a vertex ui ∈ X such that sG(ui) +
n∑

j=1,j 6=i

`G(i, j) is a maximum.

(b) There exists a vertex ui ∈ Y such that sG(ui) +
n∑

j=1,j 6=i

`G(i, j) is a minimum.

Proof. Both (a) and (b) follow from the fact that kG(i, j) is well-defined for all
ui ∈ V (G) and Theorem 2.3 yields the other required term. �

Theorem 2.5. (a) For graphs G and H of order n and m respectively, let ui ∈
V (G) be such that sG(ui)+

n∑
j=1,j 6=i

`G(i, j) is a maximum and let vj ∈ V (H) be such

that sH(vj)+
m∑

i=1,i6=j

`G(j, i) is a maximum. Then s(G H(ui, vj)) is a maximum.

(b) For graphs G and H of order n and m respectively, let ui ∈ V (G) be such that

sG(ui) +
n∑

j=1,j 6=i

`G(i, j) is a minimum and let vj ∈ V (H) be such that sH(vj) +

m∑
i=1,i6=j

`G(j, i) is a minimum. Then s(G H(ui, vj)) is a minimum.

Proof. The result is a direct consequence of Theorem 2.3 and Lemma 2.4. �
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3. Total induced vertex stress of type 2 barbell-like graphs

Joining any two graphs G and H by merging vertex ui ∈ V (G) with vertex
vj ∈ V (H) results in a Type 2 barbell-like graph. By convention, such new graph
is denoted by, G}H(ui, vj) or equivalently by H }G(vj , ui).

Theorem 3.1. For graphs G and H of order n and m respectively, and ui ∈ V (G),
vj ∈ V (H) and kG(t, i) the number of distinct shortest (ut, ui)-paths from ut to ui
in G and similarly, kH(t, j) the number of distinct shortest (vt, vj)-paths in H it
follows that,

s(G}H(ui, vj)) = s(G) + s(H) + 2[sG(ui) +

n∑
t=1,t6=i

kG(t, i)] ·
m∑

t=1,t6=j

kH(t, j)+

2

n∑
t=1,t6=i

kG(t, i) · sH(vj).

Proof. Suffice to say that the result follows from the result of Theorem 2.1 by
contracting the edge uivj . �

A more complex graph can now be addressed. Consider the graphs Hi, 1 ≤
i ≤ ` and let G = ((((H1 } H2(ui, vj)) } H3(vt, ws)) } · · · ) } H`(yq, zr)). Put
differently, for graphs Hi, i = 1, 2, 3, . . . , ` and G1 = H1 } H2(u, v), u ∈ V (H1),
v ∈ V (H2) let, Gj = Gj−1 } Hj+1(u, v), u ∈ V (Gj−1), v ∈ V (Hj+1) and 2 ≤
j ≤ ` − 1. The result from Theorem 3.1 can be applied to recursively determine
the total induced vertex stress. However, with each recursive step the vertex stress
induced by each vertex must be updated accordingly. The next corollary from the
proof of Theorem 3.1 provides these new values.

Corollary 3.2. In the graph Q = G}H(ui, vj) we have:
(a) sQ(ui) = sG(ui) + sH(vj).

(b) sQ(ut)t6=i = sG(ut)+kG(t, i)`G(t, i)
m∑

s=1,s6=j

kH(s, j)+sH(vj)kG(t, i), t = 1, 2, 3, . . . , n,

t 6= i.
(c) sQ(vj) = sH(vj) + sG(ui).

(d) sQ(vs)s6=j = sH(vs) + kH(s, j)`H(s, j)
n∑

t=1,t6=i

kG(t, i) + sG(ui)kH(s, j), s =

1, 2, 3, . . . ,m, s 6= j.

3.1. Maximum and minimum total induced vertex stress. Following Theo-
rem 2.3 and the interpretations thereof as well as utilizing Lemma 2.4 we state the
next theorem without proof.

Theorem 3.3. (a) For graphs G and H of order n and m respectively, let ui ∈
V (G) be such that sG(ui)+

n∑
j=1,j 6=i

`G(i, j) is a maximum and let vj ∈ V (H) be such

that sH(vj) +
m∑

i=1,i6=j

`G(j, i) is a maximum. Then s(G}H(ui, vj)) is a maximum.
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(b) For graphs G and H of order n and m respectively, let ui ∈ V (G) be such that

sG(ui) +
n∑

j=1,j 6=i

`G(i, j) is a minimum and let vj ∈ V (H) be such that sH(vj) +

m∑
i=1,i6=j

`G(j, i) is a minimum. Then s(G}H(ui, vj)) is a minimum.

4. Conclusion

Consider the complete graphKn, n ≥ 2 as well as graphsGj , j = 1, 2, 3, . . . , n.
Merge any vertex ui ∈ V (Gj) with vertex vj ∈ Kn. Hence, Kn is a cut-clique in
the compound graph H1 we constructed. If all edges of Kn are contracted a graph
H2 is obtained which contains a compound cut vertex.
Problem 1. If possible, find an elegant way of calculating s(H1) and s(H2) through
the recursive utilization of Theorems 2.1 and 3.1.
Problem 2. Design and code an efficient algorithm which integrates the results of
Theorems 2.1, 2.3, Corollary 2.2 and Lemma 2.4 to facilitate research into complex
graphs.
Conventionally, if graphs G of order n and H are disconnected then distance
d(u, v) = ∞ for u ∈ V (G), v ∈ V (H). For the study of either vertex stress or
induced vertex stress we define d(u, v) = 0 for u ∈ V (G), v ∈ V (H). It implies that
for the disjoint union, s(G ∪ H) = s(G) + s(H). In the join G + H all distances
between the vertices of V (G) ∪ V (H) reduce to either 1 or 2. In the corona G ◦H
(hence, n copies of H) all distances in each copy of H reduce to either 1 or 2.
Problem 3. Study total vertex stress and total induced vertex stress in G + H
and G ◦H.
Problem 4. Study total vertex stress and total induced vertex stress in G p H,
with p other graph products.
Theorem 1.2 implies that for self-complementary graphs G, S(G) + S(G) = s(G).
Thus, in general S(G) + S(G) ≤ max{s(G), s(G)}.
Problem 5. Investigate the existence, if any, of Nordhaus-Gaddum relations in
respect of total vertex stress.
The study of vertex stress (atom stress) and total vertex stress in a graph (molecular
stress) and the notion of induced vertex stress (induced atomic stress) in chemical
structures renders wide scope for further research. It is hoped that such research
will contribute to a deeper understanding of chemical properties and contribute to
the field of mathematical chemistry.
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