LP-SASAKIAN MANIFOLDS EQUIPPED WITH ZAMKOVOY CONNECTION AND CONHARMONIC CURVATURE TENSOR

Abhijit Mandal ${ }^{1}$, Ashoke Das ${ }^{2}$
${ }^{1}$ Raiganj Surendranath Mahavidyalaya, Raiganj, Uttar Dinajpur, West Bengal, India-733134.
Email: abhijit4791@gmail.com
${ }^{2}$ Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India-733134.
Email: ashoke.avik@gmail.com

Abstract

The paper concerns with some results on conharmonically flat, quasiconharmonically flat and ϕ-conharmonically flat LP-Sasakian manifolds with respect to Zamkovoy connection. Also, it contains study of generalized conharmonic $\phi-$ recurrent LP-Sasakian manifolds with respect to Zamkovoy connection. Moreover, the paper deals with LP-Sasakian manifolds satisfying $\mathcal{K}^{*}(\xi, U) \cdot R^{*}=0$, where \mathcal{K}^{*} denotes conharmonic curvature tensor and R^{*} denotes Riemannian curvature tensor with respect to Zamkovoy connection, respectively.

Key words and Phrases: LP-Sasakian manifold, Zamkovoy connection, Conharmonic curvature tensor

1. Introduction

In 1989, K. Matsumoto [13] first introduced the notion of Lorentzian paraSasakian manifolds (briefly, LP-Sasakian manifolds). Also, in 1992, I. Mihai and R. Rosca [14] introduced independently the notion of Lorentzian para-Sasakian manifolds in classical analysis. The generalized recurrent manifolds was introduced by Dubey [8] and it was studied by De and Guha et al. [6]. In this context, ϕ-recurrent LP-Sasakian manifold was first studied by A. A. Shaikh, D. G. Prakasha and Helaluddin Ahmad [15]. On the other hand, ϕ-conharmonically flat LP-Sasakian manifold was introduced by A. Taleshian [16]. Apart from these, the properties of LP-Sasakian manifolds were studied by several authors, namely U. C. De [7], C. Ozgur [17] and many others.

[^0]In 2008, a new non-metric canonical connection on para contact manifold was introduced by S. Zamkovoy [18]. This connection named as Zamkovoy connection was further studied in Sasakian manifolds, LP-Sasakian manifolds and paraKenmotsu manifolds by several researcher et al. ([3], [1], [2], [10], [11], [12], [5]). Zamkovoy connection ∇^{*} for an n-dimensional almost contact metric manifold [4] M equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1,1)$ tensor field ϕ, a vector field ξ, a 1 -form η and a Riemannian metric g is given by

$$
\begin{equation*}
\nabla_{X}^{*} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi+\eta(X) \phi Y \tag{1}
\end{equation*}
$$

for all $X, Y \in \chi(M)$, where ∇ is the Levi-Civita connection and $\chi(M)$ is the set of all vector fields on M.

In 1957, Y. Ishii [9] first studied the notion of a conharmonic curvature tensor. A rank three tensor \mathcal{K}, that remains invariant under conharmonic transformation for an n-dimensional Riemannian manifold M is given by

$$
\begin{align*}
\mathcal{K}(X, Y) Z= & R(X, Y) Z-\frac{1}{n-2}[S(Y, Z) X-S(X, Z) Y] \\
& -\frac{1}{n-2}[g(Y, Z) Q X-g(X, Z) Q Y] \tag{2}
\end{align*}
$$

for all $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the set of all vector fields of the manifold M and R denotes the Riemannian curvature tensor of type $(1,3), S$ denotes the Ricci tensor of type $(0,2), Q$ is the Ricci operator.

The conharmonic curvature tensor $\left(\mathcal{K}^{*}\right)$ with respect to Zamkovoy connection is given by

$$
\begin{align*}
\mathcal{K}^{*}(X, Y) Z= & R^{*}(X, Y) Z-\frac{1}{n-2}\left[S^{*}(Y, Z) X-S^{*}(X, Z) Y\right] \\
& -\frac{1}{n-2}\left[g(Y, Z) Q^{*} X-g(X, Z) Q^{*} Y\right] \tag{3}
\end{align*}
$$

for all $X, Y, Z \in \chi(M)$, where R^{*}, S^{*} and Q^{*} are Riemannian curvature tensor, Ricci tensor and Ricci operator with respect to Zamkovoy connection, respectively.

Definition 1.1. An n-dimensional LP-Sasakian manifold M is said to be generalized η-Einstein manifold if the Ricci tensor of type $(0,2)$ is of the form

$$
\begin{equation*}
S(Y, Z)=k_{1} g(Y, Z)+k_{2} \eta(Y) \eta(Z)+k_{3} \omega(Y, Z) \tag{4}
\end{equation*}
$$

for all $Y, Z \in \chi(M)$, where k_{1}, k_{2} and k_{3} are scalars and ω is a 2 -form.
Definition 1.2. An n-dimensional LP-Sasakian manifold M is said to be conharmonically flat with respect to Zamkovoy connection if $\mathcal{K}^{*}(X, Y) Z=0$, for all $X, Y, Z \in \chi(M)$.

Definition 1.3. An n-dimensional LP-Sasakian manifold M is said to be $\xi-$ conharmonically flat with respect to Zamkovoy connection if $\mathcal{K}(X, Y) \xi=0$, for all $X, Y, Z \in \chi(M)$.

Definition 1.4. An n-dimensional LP-Sasakian manifold M is said to be generalized conharmonic ϕ-recurrent with respect to Zamkovoy connection if

$$
\begin{aligned}
\phi^{2}\left(\nabla_{W}^{*} \mathcal{K}^{*}\right)(X, Y) Z= & A(W) K(X, Y) Z \\
& +B(W)[g(Y, Z) X-g(X, Z) Y]
\end{aligned}
$$

for all $X, Y, Z, W \in \chi(M)$, where A and B are $1-$ forms and B is non vanishing such that $A(W)=g\left(W, \rho_{1}\right), B(W)=g\left(W, \rho_{2}\right)$ and ρ_{1}, ρ_{2} are vector fields associated with 1 -forms A and B, respectively.

This paper is structured as follows:
After introduction, a short description of LP-Sasakian manifold has been given in section (2). In section (3), we have obtained Riemannian curvature tensor R^{*}, Ricci tensor S^{*}, scalar curvature r^{*} with respect to Zamkovoy connection in LP-Sasakian manifold. Section (4) contains conharmonically flat and ξ-conharmonically flat LP-Sasakian manifolds with respect to Zamkovoy connection. In section (5), we have discussed quasi-conharmonically flat LP-Sasakian manifold with respect to Zamkovoy connection. Section (6) contains ϕ - conharmonically flat LP-Sasakian manifold with respect to ∇^{*}. Section (7) concerns with a generalized conharmonic ϕ-recurrent LP-Sasakian manifold with respect to ∇^{*}. In section (8), we have discussed an LP-Sasakian manifold satisfying $\mathcal{K}^{*}(\xi, U) \cdot R^{*}=0$.

2. Preliminaries

An n-dimensional differentiable manifold is called an LP-Sasakian manifold if it admits a $(1,1)$ tensor field ϕ, a vector field ξ, a 1 -form η and a Lorentzian metric g which satisfies:

$$
\begin{align*}
\phi^{2} Y & =Y+\eta(Y) \xi, \eta(\xi)=-1, \eta(\phi X)=0, \phi \xi=0 \tag{5}\\
g(\phi X, \phi Y) & =g(X, Y)+\eta(X) \eta(Y) \tag{6}\\
g(X, \phi Y) & =g(\phi X, Y), \eta(Y)=g(Y, \xi) \tag{7}\\
\nabla_{X} \xi & =\phi X, g(X, \xi)=\eta(X) \tag{8}\\
\left(\nabla_{X} \phi\right) Y & =g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{9}
\end{align*}
$$

for all $X, Y \in \chi(M)$, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

Let us introduced a symmetric $(0,2)$ tensor field ω such that

$$
\begin{equation*}
\omega(X, Y)=g(X, \phi Y) \tag{10}
\end{equation*}
$$

Also, since the vector field η is closed in LP-Sasakian manifold M, we have

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=\omega(X, Y), \omega(X, \xi)=0 \tag{11}
\end{equation*}
$$

for all $X, Y \in \chi(M)$.

In LP-Sasakian manifold the following relations also hold:

$$
\begin{align*}
\eta(R(X, Y) Z) & =g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{12}\\
R(X, Y) \xi & =\eta(Y) X-\eta(X) Y \tag{13}\\
R(\xi, Y) Z & =g(Y, Z) \xi-\eta(Z) Y, \tag{14}\\
R(\xi, Y) \xi & =\eta(Y) \xi+Y, \tag{15}\\
S(X, \xi) & =(n-1) \eta(X), \tag{16}\\
S(\phi X, \phi Y) & =S(X, Y)+(n-1) \eta(X) \eta(Y), \tag{17}\\
Q \xi=(n-1) \xi, Q \phi=\phi Q, S & (X, Y)=g(Q X, Y), S^{2}(X, Y)=S(Q X, Y) . \tag{18}
\end{align*}
$$

Lemma 2.1. The relation between Zamkovoy connection and Levi-Civita connection in an LP-Sasakian manifold is given by

$$
\begin{equation*}
\nabla_{X}^{*} Y=\nabla_{X} Y+g(X, \phi Y) \xi-\eta(Y) \phi X+\eta(X) \phi Y \tag{19}
\end{equation*}
$$

where the torsion tensor of Zamkovoy connection is

$$
\begin{equation*}
T^{*}(X, Y)=2[\eta(X) \phi Y-\eta(Y) \phi X] \tag{20}
\end{equation*}
$$

Proof. In view of (1) and (11), we have

$$
\begin{equation*}
\left(\nabla_{X}^{*} g\right)(Y, Z)=-2 g(Y, \phi Z) \eta(X) . \tag{21}
\end{equation*}
$$

Suppose that the Zamkovoy connection ∇^{*} defined on an $n-$ dimensional LPSasakian manifold M is connected with the Levi-Civita connection ∇ by the relation

$$
\begin{equation*}
\nabla_{X}^{*} Y=\nabla_{X} Y+P(X, Y) \tag{22}
\end{equation*}
$$

where $P(X, Y)$ is a tensor field of type $(1,1)$. Then by definition of torsion tensor, we have

$$
\begin{equation*}
T^{*}(X, Y)=P(X, Y)-P(Y, X) \tag{23}
\end{equation*}
$$

Zamkovoy connection is a non-metric connection and hence from (22), we get

$$
\begin{align*}
g(P(X, Y), Z)+g(P(X, Z), Y) & =2 g(Y, \phi Z) \eta(X) \tag{24}\\
g(P(Y, X), Z)+g(P(Y, Z), X) & =2 g(X, \phi Z) \eta(Y) \tag{25}\\
g(P(Z, X), Y)+g(P(Z, Y), X) & =2 g(X, \phi Y) \eta(Z) \tag{26}
\end{align*}
$$

In view of (24), (25), (26) and (23), we have

$$
\begin{align*}
& g\left(T^{*}(X, Y), Z\right)+g\left(T^{*}(Z, X), Y\right)+g\left(T^{*}(Z, Y), X\right) \\
= & g(P(X, Y), Z)-g(P(Y, X), Z)+g(P(Z, X), Y) \\
= & -g(P(X, Z), Y)+g(P(Z, Y), X)-g(P(Y, Z), X) \\
= & 2 g(P(X, Y), Z)-2 g(Y, \phi Z) \eta(X) \\
& -2 g(X, \phi Z) \eta(Y)+2 g(X, \phi Y) \eta(Z) . \tag{27}
\end{align*}
$$

Setting

$$
\begin{align*}
g\left(T^{*}(Z, X), Y\right) & =g(\bar{T}(X, Y), Z) \tag{28}\\
g\left(T^{*}(Z, Y), X\right) & =g(\bar{T}(Y, X), Z) \tag{29}
\end{align*}
$$

in (27), we have

$$
\begin{align*}
& g\left(T^{*}(X, Y), Z\right)+g(\bar{T}(X, Y), Z)+g(\bar{T}(Y, X), Z) \\
= & 2 g(P(X, Y), Z)-2 g(Y, \phi Z) \eta(X) \\
& -2 g(X, \phi Z) \eta(Y)+2 g(X, \phi Y) \eta(Z) \tag{30}
\end{align*}
$$

which implies that

$$
\begin{align*}
P(X, Y)= & \frac{1}{2}\left[T^{*}(X, Y)+\bar{T}(X, Y)+\bar{T}(Y, X)\right] \\
& +\eta(X) \phi Y+\eta(Y) \phi X-g(X, \phi Y) \xi \tag{31}
\end{align*}
$$

In reference to (20), (28) and (29), we have

$$
\begin{align*}
\bar{T}(X, Y) & =2 g(X, \phi Y) \xi-2 \eta(X) \phi Y \tag{32}\\
\bar{T}(Y, X) & =2 g(X, \phi Y) \xi-2 \eta(Y) \phi X \tag{33}
\end{align*}
$$

Using (20), (32) and (33) in (31), we obtain

$$
\begin{equation*}
P(X, Y)=g(X, \phi Y) \xi-\eta(Y) \phi X+\eta(X) \phi Y \tag{34}
\end{equation*}
$$

In reference to (22) and (34), we can easily bring out the equation (19).
From the equation (19), it is obvious that

$$
\begin{equation*}
\nabla_{X}^{*} \xi=2 \phi X \tag{35}
\end{equation*}
$$

Proposition 2.2. The Zamkovoy connection on an n-dimensional LP-Sasakian manifold is a non-metric linear connection with torsion tensor given by equation (20).
3. Some properties of LP-SaSAKian manifold with respect to Zamkovoy connection

Let R^{*} be the Riemannian curvature tensor with respect to Zamkovoy connection and it be defined as

$$
\begin{equation*}
R^{*}(X, Y) Z=\nabla_{X}^{*} \nabla_{Y}^{*} Z-\nabla_{Y}^{*} \nabla_{X}^{*} Z-\nabla_{[X, Y]}^{*} Z \tag{36}
\end{equation*}
$$

Using (5), (8), (9) and (19) in (36), we get the Riemannian curvature R^{*} with respect to Zamkovoy connection as

$$
\begin{align*}
R^{*}(X, Y) Z= & R(X, Y) Z+3 g(X, Z) \eta(Y) \xi \\
& -3 g(Y, Z) \eta(X) \xi+3 g(Y, \phi Z) \phi X-3 g(X, \phi Z) \phi Y \\
& -\eta(X) \eta(Z) Y+\eta(Y) \eta(Z) X \tag{37}
\end{align*}
$$

Consequently, one can easily bring out the followings:

$$
\begin{align*}
S^{*}(Y, Z) & =S(Y, Z)+(n-1) \eta(Y) \eta(Z)+3 \psi g(Y, \phi Z) \tag{38}\\
S^{*}(\xi, Z) & =S^{*}(Z, \xi)=0 \tag{39}\\
Q^{*} Y & =Q Y+(n-1) \eta(Y) \xi+3 \psi \phi Y \tag{40}\\
Q^{*} \xi & =0 \tag{41}\\
r^{*} & =r-n+1+3 \psi^{2}, \tag{42}
\end{align*}
$$

$$
\begin{align*}
R^{*}(X, Y) \xi & =0 \tag{43}\\
R^{*}(\xi, Y) Z & =4 g(\phi Y, \phi Z) \xi \tag{44}\\
R^{*}(X, \xi) Z & =-4 g(\phi X, \phi Z) \xi \tag{45}
\end{align*}
$$

for all $X, Y, Z \in \chi(M)$, where $\psi=\operatorname{trace}(\phi)$.
Proposition 3.1. Let M be an n-dimensional LP-Sasakian manifold admitting Zamkovoy connection ∇^{*}, then
(i) The curvature tensor R^{*} of ∇^{*} is given by (37),
(ii) The Ricci tensor S^{*} of ∇^{*} is given by (38),
(iii) The scalar curvature r^{*} of ∇^{*} is given by (42),
(iv) The Ricci tensor S^{*} of ∇^{*} is symmetric,
(v) R^{*} satisfies: $R^{*}(X, Y) Z+R^{*}(Y, Z) X+R^{*}(Z, X) Y=0$.
4. Conharmonically flat and ξ-Conharmonically flat LP-Sasakian MANIFOLDS WITH RESPECT TO ZAMKOVOY CONNECTION

Theorem 4.1. If an n-dimensional LP-Sasakian manifold $M(n>2)$ is conharmonically flat with respect to Zamkovoy connection, then the scalar curvature is given by $r=n-1-3 \psi^{2}$.

Proof. In view of (2) and (3), we have

$$
\begin{align*}
& \mathcal{K}^{*}(X, Y) Z \\
= & \mathcal{K}(X, Y) Z+3 g(X, Z) \eta(Y) \xi-3 g(Y, Z) \eta(X) \xi \\
& +3 g(Y, \phi Z) \phi X-3 g(X, \phi Z) \phi Y-\eta(X) \eta(Z) Y+\eta(Y) \eta(Z) X \\
& -\frac{n-1}{n-2}[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi] \\
& -\frac{3 \psi}{n-2}[g(Y, Z) \phi X-g(X, Z) \phi Y] \\
& -\frac{n-1}{n-2}[\eta(Y) X-\eta(X) Y] \eta(Z) \\
& -\frac{3 \psi}{n-2}[g(Y, \phi Z) X-3 \psi g(X, \phi Z) Y] . \tag{46}
\end{align*}
$$

Let us consider an LP-Sasakian manifold M which is conharmonically flat with respect to Zamkovoy connection, then from (3), we have

$$
\begin{align*}
R^{*}(X, Y) Z= & \frac{1}{n-2}\left[S^{*}(Y, Z) X-S^{*}(X, Z) Y\right] \\
& +\frac{1}{n-2}\left[g(Y, Z) Q^{*} X+g(X, Z) Q^{*} Y\right] \tag{47}
\end{align*}
$$

Taking inner product of (47) with a vector field V, we get

$$
\begin{align*}
& g\left(R^{*}(X, Y) Z, V\right) \\
= & \frac{1}{n-2}\left[S^{*}(Y, Z) g(X, V)-S^{*}(X, Z) g(Y, V)\right] \\
& +\frac{1}{n-2}\left[g(Y, Z) S^{*}(X, V)-g(X, Z) S^{*}(Y, V)\right] \tag{48}
\end{align*}
$$

Taking an orthonormal frame field of M and contracting (48) over X and V, we obtain

$$
r=n-1-3 \psi^{2}
$$

This gives the theorem.
Corollary 4.2. If an LP-Sasakian manifold is conharmonically flat with respect to Zamkovoy connection, then its scalar curvature is constant, provided that trace $(\phi)=$ 0.

Theorem 4.3. An n-dimensional LP-Sasakian manifold $(n>2)$ is ξ - conharmonically flat with respect to Zamkovoy connection if and only if it is so with respect to Levi-Civita connection, provided that the vector fields are horizontal vector fields.

Proof. Setting $Z=\xi$ in (46), we have

$$
\begin{align*}
& \mathcal{K}^{*}(X, Y) \xi \\
= & \mathcal{K}(X, Y) \xi+\frac{1}{n-2}[\eta(Y) X-\eta(X) Y] \\
& -\frac{3 \psi}{n-2}[\eta(Y) \phi X-\eta(X) \phi Y] \\
= & \mathcal{K}(X, Y) \xi, \quad \text { if } X, Y \text { are horizontal vector fields on } M . \tag{49}
\end{align*}
$$

This gives the theorem.
Theorem 4.4. If an n-dimensional LP-Sasakian manifold $(n>2)$ is $\xi-$ conharmonically flat with respect to Zamkovoy connection, then its scalar curvature with respect to Zamkovoy connection vanishes.

Proof. Setting $Z=\xi$ in (3), we have

$$
\begin{equation*}
\mathcal{K}^{*}(X, Y) \xi=\frac{1}{n-2}\left[\eta(Y) Q^{*} X-\eta(X) Q^{*} Y\right] \tag{50}
\end{equation*}
$$

If M is ξ-conharmonically flat with respect to Zamkovoy connection, then it follows from (50) that

$$
\begin{equation*}
0=\eta(Y) Q^{*} X-\eta(X) Q^{*} Y \tag{51}
\end{equation*}
$$

Taking inner product of (51) with a vector field V, we obtain

$$
\begin{equation*}
0=\eta(Y) S^{*}(X, V)-\eta(X) S^{*}(Y, V) \tag{52}
\end{equation*}
$$

Setting $Z=\xi$ in (52)

$$
\begin{equation*}
S^{*}(X, V)=0 . \tag{53}
\end{equation*}
$$

Taking an orthonormal frame field of M and contracting (53) over X and V, we get

$$
r^{*}=0
$$

This gives the theorem.
5. Quasi-conharmonically flat LP-Sasakian manifold with respect to Zamkovoy connection.

Theorem 5.1. If an n-dimensional LP-Sasakian manifold $M(n>2)$ is quasiconharmonically flat with respect to Zamkovoy connection, then its scalar curvature with respect to Zamkovoy connection vanishes.

Proof. Let us consider an LP-Sasakian manifold M which is quasi-conharmonically flat with respect to Zamkovoy connection, i.e.,

$$
\begin{equation*}
g\left(\mathcal{K}^{*}(\phi X, Y) Z, \phi V\right)=0 \tag{54}
\end{equation*}
$$

for all $X, Y, Z, V \in \chi(M)$.
Then, in view of (3), we have

$$
\begin{align*}
& g\left(R^{*}(\phi X, Y) Z, \phi V\right) \\
= & \frac{1}{n-2}\left[S^{*}(Y, Z) g(\phi X, \phi V)-S^{*}(\phi X, Z) g(Y, \phi V)\right] \\
& +\frac{1}{n-2}\left[g(Y, Z) S^{*}(\phi X, \phi V)-g(\phi X, Z) S^{*}(Y, \phi V)\right] . \tag{55}
\end{align*}
$$

Let $\left\{e_{i}\right\}(1 \leq i \leq n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $Y=Z=e_{i}$ in the equation (55) and taking summation over $i(1 \leq i \leq n)$, we get

$$
\begin{align*}
& \sum_{i=1}^{n} g\left(R^{*}\left(\phi X, e_{i}\right) e_{i}, \phi V\right) \\
= & \frac{1}{n-2}\left[\sum_{i=1}^{n} S^{*}\left(e_{i}, e_{i}\right) g(\phi X, \phi V)-\sum_{i=1}^{n} S^{*}\left(\phi X, e_{i}\right) g\left(e_{i}, \phi V\right)\right] \\
& +\frac{1}{n-2}\left[\sum_{i=1}^{n} g\left(e_{i}, e_{i}\right) S^{*}(\phi X, \phi V)-\sum_{i=1}^{n} g\left(\phi X, e_{i}\right) S^{*}\left(e_{i}, \phi V\right)\right] . \tag{56}
\end{align*}
$$

It can be easily seen that

$$
\begin{align*}
\sum_{i=1}^{n} g\left(e_{i}, e_{i}\right) & =n \tag{57}\\
\sum_{i=1}^{n} S^{*}\left(\phi X, e_{i}\right) g\left(e_{i}, \phi V\right) & =S^{*}(\phi X, \phi V), \tag{58}\\
\sum_{i=1}^{n} S^{*}\left(e_{i}, e_{i}\right) & =r^{*} \tag{59}
\end{align*}
$$

Using (57), (58) and (59) in (56), we get

$$
r^{*}=0
$$

This gives the theorem.
6. ϕ-CONHARMONICALLY FLAT LP-SASAKIAN MANIFOLD WITH RESPECT TO Zamkovoy connection

Theorem 6.1. If an n-dimensional LP-Sasakian manifold $M(n>2)$ is ϕ-conharmonically flat with respect to Zamkovoy connection, then M is a generalized η-Einstein manifold.

Proof. Let us consider an LP-Sasakian manifold M which is ϕ-conharmonically flat with respect to Zamkovoy connection, i.e.,

$$
\begin{equation*}
g\left(\mathcal{K}^{*}(\phi X, \phi Y) \phi Z, \phi V\right)=0 \tag{60}
\end{equation*}
$$

for all $X, Y, Z, V \in \chi(M)$
Then in view of (3), we have

$$
\begin{align*}
& g\left(R^{*}(\phi X, \phi Y) \phi Z, \phi V\right) \\
= & \frac{1}{n-2}\left[S^{*}(\phi Y, \phi Z) g(\phi X, \phi V)-S^{*}(\phi X, \phi Z) g(\phi Y, \phi V)\right] \\
& +\frac{1}{n-2}\left[g(\phi Y, \phi Z) S^{*}(\phi X, \phi V)-g(\phi X, \phi Z) S^{*}(\phi Y, \phi V)\right] . \tag{61}
\end{align*}
$$

Let $\left\{e_{i}, \xi\right\}(1 \leq i \leq n-1)$ be a local orthonormal basis of the tangent space at any point of the manifold M. Using the fact that $\left\{\phi e_{i}, \xi\right\}(1 \leq i \leq n-1)$ is also a local orthonormal basis of the tangent space and setting $Y=Z=e_{i}$ and taking summation over $i(1 \leq i \leq n-1)$ it follows from (61) that

$$
\begin{align*}
& \sum_{i=1}^{n-1} R^{*}\left(\phi X, \phi e_{i}, \phi e_{i}, \phi V\right) \\
= & \frac{1}{n-2}\left[\sum_{i=1}^{n-1} S^{*}\left(\phi e_{i}, \phi e_{i}\right) g(\phi X, \phi V)-\sum_{i=1}^{n-1} S^{*}\left(\phi X, \phi e_{i}\right) g\left(\phi e_{i}, \phi V\right)\right] \\
& +\frac{1}{n-2}\left[\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right) S^{*}(\phi X, \phi V)-\sum_{i=1}^{n-1} g\left(\phi X, \phi e_{i}\right) S^{*}\left(\phi e_{i}, \phi V\right)\right] \tag{62}
\end{align*}
$$

It can be easily seen that

$$
\begin{align*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right) & =n-1, \tag{63}\\
\sum_{i=1}^{n-1} S^{*}\left(\phi X, \phi e_{i}\right) g\left(\phi e_{i}, \phi V\right) & =S^{*}(\phi X, \phi V) \tag{64}\\
\sum_{i=1}^{n-1} S^{*}\left(\phi e_{i}, \phi e_{i}\right) & =r^{*} \tag{65}
\end{align*}
$$

Using (63), (64) and (65) in (62), we have

$$
\begin{align*}
& S(X, V)=\left(r-n+1+3 \psi^{2}\right) g(X, V) \\
& +\left(r-2 n+2+3 \psi^{2}\right) \eta(X) \eta(V)-3 \psi \omega(X, V) \tag{66}
\end{align*}
$$

where $\omega(X, V)=g(X, \phi V)$ and $\psi=$ trace (ϕ).
Therefore M is a generalized η-Einstein manifold.
7. Generalized conharmonic ϕ-RECurrent LP-Sasakian manifold with RESPECT TO ZAMKOVOY CONNECTION

Theorem 7.1. If an n-dimensional LP-Sasakian manifold $M(n>2)$ is generalized conharmonic ϕ-recurrent with respect to Zamkovoy connection, then 1 -forms A and B are related as $B(W)=\left[\frac{r-n+1+3 \psi^{2}}{(n-2)(n-1)}\right] A(W)$, where W is an arbitrary vector field on M and $\psi=$ trace (ϕ).

Proof. Let M be a generalized conharmonic ϕ-recurrent LP-Sasakian manifold with respect to Zamkovoy connection, then

$$
\begin{align*}
& \phi^{2}\left(\nabla_{W}^{*} \mathcal{K}^{*}\right)(X, Y) Z \\
= & A(W) \mathcal{K}^{*}(X, Y) Z+B(W)[g(Y, Z) X-g(X, Z) Y] \tag{67}
\end{align*}
$$

where the 1 -forms are given by $A(W)=g\left(W, \rho_{1}\right), B(W)=g\left(W, \rho_{2}\right), B(W) \neq$ 0 and ρ_{1}, ρ_{2} are vector fields associated with 1 -forms A and B, respectively.

Using (5) in (67), we have

$$
\begin{align*}
& \left(\nabla_{W}^{*} \mathcal{K}^{*}\right)(X, Y) Z \\
= & -\eta\left(\left(\nabla_{W}^{*} \mathcal{K}^{*}\right)(X, Y) Z\right) \xi A(W) \mathcal{K}^{*}(X, Y) Z \\
& +B(W)[g(Y, Z) X-g(X, Z) Y] \tag{68}
\end{align*}
$$

The inner product of the equation (68) with vector field V gives

$$
\begin{align*}
& g\left(\left(\nabla_{W}^{*} \mathcal{K}^{*}\right)(X, Y) Z, V\right) \\
= & -\eta\left(\left(\nabla_{W}^{*} \mathcal{K}^{*}\right)(X, Y) Z\right) \eta(V)+A(W) g\left(\mathcal{K}^{*}(X, Y) Z, V\right) \\
& +B(W)[g(Y, Z) g(X, V)-g(X, Z) g(Y, V)] \tag{69}
\end{align*}
$$

In view of (3), it is easily seen that

$$
\begin{align*}
& g\left(\left(\nabla_{W}^{*} \mathcal{K}^{*}\right)(X, Y) Z, V\right) \\
= & g\left(\left(\nabla_{W}^{*} R^{*}\right)(X, Y) Z, V\right) \\
& -\frac{1}{n-2}\left[\left(\nabla_{W}^{*} S^{*}\right)(Y, Z) g(X, V)-\left(\nabla_{W}^{*} S^{*}\right)(X, Z) g(Y, V)\right] \\
- & \frac{1}{n-2}\left[g(Y, Z)\left(\nabla_{W}^{*} S^{*}\right)(X, V)-g(X, Z)\left(\nabla_{W}^{*} S^{*}\right)(Y, V)\right] \tag{70}\\
= & g\left(\left(\nabla_{W}^{*} R^{*}\right)(X, Y) Z, \xi\right) \\
& -\frac{1}{n-2}\left[\left(\nabla_{W}^{*} S^{*}\right)(Y, Z) \eta(X)-\left(\nabla_{W}^{*} S^{*}\right)(X, Z) \eta(Y)\right] \\
& \tag{71}\\
& g\left(\mathcal{K}^{*}(X, Y) Z, V\right) \\
= & g\left(R^{*}(X, Y) Z, V\right) \\
& \quad-\frac{1}{n-2}\left[S^{*}(Y, Z) g(X, V)-S^{*}(X, Z) g(Y, V)\right] \tag{72}\\
& \quad-\frac{1}{n-2}\left[g(Y, Z) S^{*}(X, V)-g(X, Z) S^{*}(Y, V)\right]
\end{align*}
$$

Using (70), (71) and (72) in (69), we get

$$
\begin{align*}
& g\left(\left(\nabla_{W}^{*} R^{*}\right)(X, Y) Z, V\right) \\
= & \frac{1}{n-2}\left[\left(\nabla_{W}^{*} S^{*}\right)(Y, Z) g(X, V)-\left(\nabla_{W}^{*} S^{*}\right)(X, Z) g(Y, V)\right] \\
& +\frac{1}{n-2}\left[g(Y, Z)\left(\nabla_{W}^{*} S^{*}\right)(X, V)-g(X, Z)\left(\nabla_{W}^{*} S^{*}\right)(Y, V)\right] \\
& +\frac{1}{n-2}\left[\left(\nabla_{W}^{*} S^{*}\right)(Y, Z) \eta(X)-\left(\nabla_{W}^{*} S^{*}\right)(X, Z) \eta(Y)\right] \eta(V) \\
& +g\left(R^{*}(X, Y) Z, V\right) A(W)-g\left(\left(\nabla_{W}^{*} R^{*}\right)(X, Y) Z, \xi\right) \eta(V) \\
& -\frac{1}{n-2}\left[S^{*}(Y, Z) g(X, V)-S^{*}(X, Z) g(Y, V)\right] A(W) \\
& -\frac{1}{n-2}\left[g(Y, Z) S^{*}(X, V)-g(X, Z) S^{*}(Y, V)\right] A(W) \\
& +[g(Y, Z) g(X, V)-g(X, Z) g(Y, V)] B(W) . \tag{73}
\end{align*}
$$

Taking an orthonormal frame field of M and contracting (73) over Y and Z, we get

$$
\begin{align*}
& \left(\nabla_{W}^{*} S^{*}\right)(X, V) \\
= & \frac{1}{n-2}\left[\nabla_{W}^{*} r^{*} g(X, V)-\left(\nabla_{W}^{*} S^{*}\right)(X, V)\right] \\
& +\frac{1}{n-2}\left[n\left(\nabla_{W}^{*} S^{*}\right)(X, V)-\left(\nabla_{W}^{*} S^{*}\right)(X, V)\right]-g\left(\nabla_{W}^{*} S^{*}\right)(X, \xi) \eta(V) \\
& +\frac{1}{n-2}\left[\nabla_{W}^{*} r^{*} \eta(X) \eta(V)-\left(\nabla_{W}^{*} S^{*}\right)(X, \xi) \eta(V)\right] \\
& +\left(\nabla_{W}^{*} S^{*}\right)(X, V) A(W)-\frac{1}{n-2}\left[r^{*} g(X, V)-S^{*}(X, V)\right] A(W) \\
& -\frac{n-1}{n-2} S^{*}(X, V) A(W)+(n-1) g(X, V) B(W) \tag{74}
\end{align*}
$$

Setting $V=\xi$ in (74)

$$
\begin{equation*}
B(W)=\left[\frac{r-n+1+3 \psi^{2}}{(n-2)(n-1)}\right] A(W) \tag{75}
\end{equation*}
$$

This gives the theorem.

8. LP-SASAKiAn manifold satisfying $\mathcal{K}^{*}(\xi, U) \cdot R^{*}=0$

Theorem 8.1. If in an n-dimensional $(n>2) L P$-Sasakian manifold M, the condition $\mathcal{K}^{*}(\xi, U) \circ R^{*}=0$ holds, then the equation $S^{2}(Y, U)+9 \psi^{2} g(Y, U)+$ $\left[(n-1)^{2}+9 \psi^{2}\right] \eta(Y) \eta(U)+6 \psi S(Y, \phi U)=0$, is satisfied on M, where Y, U $\in \chi(M)$ and $\psi=\operatorname{trace}(\phi)$.

Proof. Let us consider an LP-Sasakian manifold M satisfying the condition

$$
\begin{equation*}
\left(\mathcal{K}^{*}(\xi, U) \cdot R^{*}\right)(X, Y) Z=0 \tag{76}
\end{equation*}
$$

Then, we have

$$
\begin{align*}
0= & \mathcal{K}^{*}(\xi, U) R^{*}(X, Y) Z-R^{*}\left(\mathcal{K}^{*}(\xi, U) X, Y\right) Z \\
& -R^{*}\left(X, \mathcal{K}^{*}(\xi, U) Y\right) Z-R^{*}(X, Y) \mathcal{K}^{*}(\xi, U) Z \tag{77}
\end{align*}
$$

Replacing Z by ξ in (77), we get

$$
\begin{align*}
0= & \mathcal{K}^{*}(\xi, U) R^{*}(X, Y) \xi-R^{*}\left(\mathcal{K}^{*}(\xi, U) X, Y\right) \xi \\
& -R^{*}\left(X, \mathcal{K}^{*}(\xi, U) Y\right) \xi-R^{*}(X, Y) \mathcal{K}^{*}(\xi, U) \xi . \tag{78}
\end{align*}
$$

In view of (37), (40), (3) and (78), we have

$$
0=R^{*}(X, Y) \mathcal{K}^{*}(\xi, U) \xi
$$

$$
=R^{*}(X, Y) Q^{*} U
$$

$$
\begin{equation*}
=R^{*}(X, Y) Q U+3 \psi R^{*}(X, Y) \phi U \tag{79}
\end{equation*}
$$

The inner product of the equation (79) with vector field V gives

$$
\begin{equation*}
0=g\left(R^{*}(X, Y) Q U, V\right)+3 \psi g\left(R^{*}(X, Y) \phi U, V\right) \tag{80}
\end{equation*}
$$

Let $\left\{e_{i}\right\}(1 \leq i \leq n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $X=V=e_{i}$ and taking summation over $i(1 \leq i \leq n)$ and using (18) in (80), we get

$$
\begin{align*}
0= & S^{2}(Y, U)+9 \psi^{2} g(Y, U) \\
& +\left[(n-1)^{2}+9 \psi^{2}\right] \eta(Y) \eta(U)+6 \psi S(Y, \phi U) \tag{81}
\end{align*}
$$

This gives the theorem.

Acknowledgement

The authors would like to thank the referee for their valuable suggestions to improve the paper.

REFERENCES

[1] Biswas, A. and Baishya, K. K., "Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection", Bulletin of the Transilvania University of Brasov, 12(2) (2020), 233-246.
[2] Biswas, A. and Baishya, K. K., "A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds", Scientific Studies and Research Series Mathematics and Informatics, 29(1) (2019), 59-72.
[3] Blaga, A. M., "Canonical connection on Para Kenmotso manifold", Novi Sad J. Math., 45(2) (2015), 131-142.
[4] Blair, D. E., "Contact manifolds in Riemannian Geometry", Lect. Notes Math. SpringerVerlag, Berlin, 509 (1976).
[5] Das, A. and Mandal, A., "Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection", The Aligarh Bull. of Math., 39(2) (2020), 47-61.
[6] De, U. C. and Guha, N., On generalized recurrent manifolds, J. Nat. Acad. Math., 9 (1991), 85-92.
[7] De, U. C., Matsumoto, K. and Shaikh, A. A., "On Lorentzian para-Sasakian manifolds", Rendiconti del Seminario Matematico di Messina, Serie II, Supplemento, 3 (1999), 149-158.
[8] Dubey, R. S., "Generalized recurrent spaces", Indian j. pure Appl. Math., 10(12) (1979), 1508-1513.
[9] Ishii, Y., "On conharmonic transformations", Tensor, N. S., 11 (1957), 73-80.
[10] Mandal, A. and Das, A., "On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection", Adv. Math. Sci. J., 9(10) (2020), 8929-8940.
[11] Mandal, A. and Das, A., "Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para Sasakian manifolds", J. Indones. Math. Soc., 26(3) (2020), 369-379.
[12] Mandal, A. and Das, A., "Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection", Bull. Cal. Math. Soc., 112(5) (2020), 431-450.
[13] Matsumoto, K., "On Lorentzian paracontact manifolds", Bull. of Yamagata Univ. Nat. Sci., 12(2) (1989), 151-156.
[14] Mihai, I. and Rosca, R., "On Lorentzian P-Sasakian manifolds, Classical Analysis", World Scientific Publi., (1992), 155-169.
[15] Shaikh, A. A., Prakasha, D. G. and Ahmad, H., "On generalized ϕ-recurrent LP-Sasakian manifolds", J. of the Egyptian Mathematical Society, 23 (2015), 161-166.
[16] Taleshian, A., Prakasha, D. G., Vikas, K. and Asghari, N., "On The conharmonic Curvature Tensor of LP-Sasakian Manifolds", Palestine J. of Math., 5(1) (2016), 177-184.
[17] Ozgur, C., " φ-Conformally flat Lorentzian para Saskian manifolds", Radovi Mathemeticki, 12 (2003), 99-106.
[18] Zamkovoy, S., "Canonical connections on paracontact manifolds", Ann. Global Anal. Geom., $\mathbf{3 6 (1)}$ (2008), 37-60.

[^0]: 2020 Mathematics Subject Classification: 53C15, 53C50
 Received: 02-10-2020, accepted: 06-04-2021

