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Abstract. The motivation behind this paper is to use hybrid method for searching

a typical component of the set of fixed points of an infinite family of nonexpan-

sive mappings and the set of monotone, Lipschtiz continuous variational inequality

problem. The contemplated method is combination of two method one is extragra-

dient method and the other one is DQ method. Also, we demonstrate the strong

convergence of the designed iterative technique, under some warm conditions.
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1. INTRODUCTION

Throughout this paper, let H be a real Hilbert Space with norm || · || and
inner product < ·, · >. Let D be a non empty closed convex subset of H. Let
A : D → H be a non linear mapping then the problem of the variational inequality
is to find a point x ∈ D such that

< Ax, y − x > ≥ 0, ∀ y ∈ D. (1)

The solution set of the variational inequality is represented by Ω.
A point x ∈ D is said to be a fixed point if Tx = x. We adopt F (T ) to represent
the set of fixed points of T . A self mapping T on D is said to be nonexpansive if
||Tx− Ty|| ≤ ||x− y||,∀x, y ∈ D.

In 1964, Stampacchia [15] introduced and studied Variational inequality prob-
lem. It is notable that a wide classes of issue emerging in pure and applied sciences
can be illuminated with the assistance of variational inequality problem or in other
words we say that many problems are proved equivalent to variational inequality
problem such as optimization problem, maximisation problem. Several researcher
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works on common solution of the variational inequality and the optimization prob-
lem. In fact, there are different approach to study variational inequality problems.
Based on distinct approaches, many algorithms for solving variational inequality
problem is considered and proposed ( [3], [5], [6], [7], [8], [13], [17], [16]) Let us start
with one of the method which is used in our paper, i.e., Korpelevich’s extragradi-
ent method which was popularized by Korpelevich [9] in 1976 and which initiate a
sequence {an} defined as:

bn = PD(an − λAan)

an+1 = PD(an − λAbn), n ≥ 0

where PD is the metric projection from Rn onto D,A : D → H is a monotone
operator and λ is a constant. Korpelelevich [9] proved that the sequence {an}
converges strongly to a solution of VI(D,A).

Korpelevich’s extragradient technique has widely been read for the solution
of finding common point which belong to the solution set of fixed points of a non-
expansive mapping and variational inequality. In 2006, Nadezhkina and Takahashi
[10] introduced the following method:

x0 = x ∈ D,
yn = PD(xn − λnAxn),

zn = αnxn + (1− αn)TPD(xn − λnAyn),

Dn = {z ∈ D : ||zn − z|| ≤ ||xn − z||},
Qn = {z ∈ D :< xn − z, x− xn >≥ 0},

xn+1 = PDn∩Qn
x, n ≥ 0,

where PD is the metric projection from H onto D and T : D → D be a non-
expansive mapping with A : D → H monotone k-Lipschitz continuous mapping
having two sequences {αn} and {λn}. They established the strong convergence of
the sequences, {xn}, {yn} and {zn} to the same element of F (T ) ∩ Ω.

Influenced from the work of Ceng. et al. [1], in which they proved the weak
convergence of the iterative method to ∩Ni=nF (Ti)∩Ω while considering finite family
of nonexpansive mapping, Ceng. et al. [2], discovered hybrid extragradient like
approximation method for proving strong convergence of this method to PF (T )∩Ω,
Yao. et al. [19], suggested a hybrid method for variational inequality and fixed
point of infinite family of nonexpansive mapping and prove its strong convergence to
∩∞n=iF (Tn)∩Ω, in this paper, we use hybrid method for finding a typical component
of the arrangement of fixed points of an infinite family of nonexpansive mapping
and the set of monotone, Lipschtiz continuous variational inequalities problem. The
planned method is combination of two methods, one is the extragradient method
and the other one is DQ method. Also, we demonstrated the strong convergence
of the designed iterative technique, under some warm conditions.
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2. Preliminaries

In this section, we recall some basics definitions and lemmas which are further
used in our proof. Let D be a nonempty closed convex subset of a real Hilbert space
H. A mapping A : D → H is called monotone if < Au−Av, u− v >≥ 0,∀u, v ∈ D
and a mapping T : D → D is said to be nonexpansive if ||Tx−Ty|| ≤ ||x−y||,∀x, y ∈
D. F (T ) denote the set of fixed points of T, that is, F (T ) = {x ∈ D : Tx = x}.
For every point x ∈ H, PD(x) represent the unique nearest point in D and PD is
called the metric projection of H onto convex subset D and also, a nonexpansive
mapping from H onto D. It has the following properties:

(i) PD(x) ∈ D

||PD(x)− PD(y)|| ≤ ||x− y||, ∀ x, y ∈ H

(ii) < x− PD(x), y − PD(x) > ≤ 0, ∀ x ∈ H, y ∈ D

(iii) The property (ii) is equivalent to

||x− PD(x)||2 + ||y − PD(x)||2 ≤ ||x− y||, ∀ x ∈ H, y ∈ D

(iv) In the variational inequality problem, projection implies that

u ∈ Ω, ⇐⇒ u = PD(u− λAu), ∀ λ > 0.

As Opial’s condition [11], implies for, any sequence {xn} with xn converges weakly
to x and the inequality

lim
n→∞

inf ||xn − x|| < lim
n→∞

inf ||xn − y||

holds ∀ y ∈ H with y 6= x.

As D be a nonempty closed and convex subset of H. Let {Ti}∞i=1 be infinite
family of nonexpansive mappings of D into itself and {µi}∞i=1 be a real number
sequence such that 0 ≤ µi ≤ 1 for every i ∈ N .
Here, we use the mapping Wn [12] defined as

Un,n+1 = I,

Un,n = µnTnUn,n+1 + (1− µn)I,

Un,n−1 = µn−1Tn−1Un,n + (1− µn−1)I,

Un,k = µkTkUn,k+1 + (1− µk)I,

Un,k−1 = µk−1Tk−1Un,k + (1− µk−1)I,

Un,2 = µ2T2Un,3 + (1− µ2)I,

Wn = Un,1 = µ1T1Un,2 + (1− µ1)I,

where µ1, µ2, · · · are real numbers such that 0 ≤ µn ≤ 1 for each n ≥ 0 and
T1, T2, · · · are nonexpansive mappings from D into itself. Non expansivity of Ti
gives us the non expansivity of Wn. We have the following pivotal lemmas related
to Wn [12] which are stated as:
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Lemma 2.1. [11] Let D be a non empty closed convex subset of real Hilbert space H.
Let T1, T2, T3, · · · are nonexpansive mappings of D into itself such that ∩∞n=1F (Tn)
is nonempty. Let µ1, µ2, µ3, · · · are real numbers such that 0 ≤ µi ≤ 1 for every
i ∈ N . Then for every x ∈ D and k ∈ N, the limit limn→∞ Un,kx exists.

Lemma 2.2. [11] Let D be a nonempty closed convex subset of H. Let T1, T2, T3, · · ·
are nonexpansive mappings of D into itself such that ∩∞n=1F (Tn) is nonempty. Let
µ1, µ2, µ3, · · · are real numbers such that 0 ≤ µi ≤ 1 for every i ∈ N . Then,
F (W ) = ∩∞n=1F (Tn).

Lemma 2.3. [14] Using the above two lemmas, W is defined from D to itself as:
Wx = limn→∞Wnx = limn→∞ Un,1x, ∀ x ∈ D. If {xn} is bounded sequence in D,
then

lim
n→∞

||Wxn −Wnxn|| = 0.

Lemma 2.4. [18] Let D be a nonempty closed convex subset of H. Let T : D → D
be a nonexpansive mapping with F (T ) 6= φ. Then T is demiclosed on D, i.e., if
yn → z ∈ D weakly and yn − Tyn → y strongly then (I − T )z = y.

Lemma 2.5. [4] Let D be nonempty closed and convex subset of H. Let {xn} be
a sequence in H and u ∈ H. Let s = PD(u). If {xn} is such that ww(xn) ⊂ D and
satisfy the equation

||xn − u|| ≤ ||u− s||, ∀ n.

Then {xn} → s.

Here ww(xn) respresents the weak convergence of sequence xn.

3. Main Result

Theorem 3.1. Let H be real Hilbert Space and D be its nonempty closed and convex
subset. Let A : D → H be a k- Lipschitz continuous, monotone, nonexpansive
mapping and {Tn)∞n=1 be an infinite family of nonexpansive mappings of D into
itself such that ∩∞n=1F (Tn)∩Ω 6= φ. Let a1 = a0 ∈ D. For D1 = D, let {tn}, {cn},
{bn}, and {an} be sequences generated by:

tn = PD(an − λnAan)

cn = βnan + (1− βn)WnPD(an − λnAtn)

bn = αnan + (1− αn)WnPD(an − λnAcn),

Dn = {s ∈ D : ||bn − s|| ≤ ||an − s||, ||cn − s|| ≤ ||an − s||},
Qn = {s ∈ D :< an − s, a0 − an >≥ 0},

an+1 = PDn∩Qn
a0, n ≥ 0,

(2)

where Wn is mapping defined above. Assume the following conditions hold:

(i) {λn} ⊂ [l,m] for some l,m ∈ (0, 1/k)
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(ii) {αn}, {βn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {tn}, {cn}, {bn}, and {an} converges strongly to the same point
P∩∞

n=1F (Tn)∩Ω(a0).

Proof. We divide the proof into several parts while proving the main result. We
assume that all the assumptions of theorem are satisfied.
Step 1: Firstly, we prove that Dn∩Qn is closed and convex for every n ∈ N ∪{0}.
As it is obvious that Dn is closed and Qn is closed and convex . We only need to
prove that Dn is convex.
Since, ||bn − s|| ≤ ||an − s|| is equivalent to ||bn − an||2 + 2 < bn − an, an − s >≤ 0
it gives us that Dn is convex . Hence, Dn ∩Qn is a closed convex subset of H for
any n ∈ N
Step 2: We show that ∩∞n=1F (Tn) ∩ Ω ⊆ Dn ∩Qn.
For this purpose, set un = PD(an−λnAtn) and vn = PD(an−λnAcn) for all n ≥ 1.
Choose a ∈ ∩∞n=1F (Tn) ∩ Ω. From property (iii) of PD, we have

||un − a||2 ≤ ||an − λntn − a||2 − ||an − λnAtn − un||2

= ||an − a||2 − ||an − un||2 + 2λn < Atn, a− un >

= ||an − a||2 − ||an − un||2 + 2λn < Atn, a− tn > +2λn < Atn, tn − un >
(3)

As a ∈ Ω and tn ∈ Dn ⊂ D, we get
< Au, tn − a >≥ 0.

From the monotonicity of A, we have
< Atn, tn − a >≥ 0. (4)

Combining (3) and (4), we get

||un − a||2 ≤ ||an − a||2 − ||an − un||2 + 2λn < Atn, tn − un >

= ||an − a||2 − ||an − tn||2 − 2 < an − tn, tn − un > −||tn − un||2

+ 2λn < Atn, tn − un > (5)

= ||an − a||2 − ||an − tn||2 − ||tn − un||2 + 2 < an − tn − λnAtn, un − tn >

as tn = PD(an − λnAan) and un ∈ Dn. Then by the property (iii) of PD, we have

< an − λnAan − tn, un − tn >≤ 0.

Hence,

< an − λnAtn − tn, un − tn >
=< an − λnAan − tn, un − tn > + < λnAan − λnAtn, un − tn >
≤< λnAan − λnAtn, un − tn >< λnk||an − tn||.||un − tn||. (6)

From (5) and (6), we have
||un − a||2 ≤ ||an − a||2 − ||an − tn||2 − ||tn − un||2 + 2 < an − tn − λnAtn, un − tn >

≤ ||an − a||2 − ||an − tn||2 − ||tn − un||2 + 2λnk||an − tn||.||un − tn||
≤ ||an − a||2 − ||an − tn||2 − ||tn − un||2 + λ2

nk
2||an − tn||2 + ||un − tn||2

≤ ||an − a||2 + (λ2
nk

2 − 1)||an − tn||2

≤ ||an − a||2. (7)
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In a similar manner, we can show that

||vn − a||2 ≤ ||an − a||2 + ((λ2
nk

2 − 1)||an − cn||2 (8)

≤ ||an − a||2.

From (7) together with cn = βnan + (1− βn)Wnun and a = Wna, we get

||cn − a||2 = ||βn(an − a) + (1− βn)(Wnun − a)||2

≤ βn||an − a||2 + (1− βn)||Wnun − a||2

≤ βn||an − a||2 + (1− βn)||un − a||2

≤ βn||an − a||2 + (1− βn)(||an − a||2 + (λ2
nk

2 − 1)||an − un||2)

≤ ||an − a||2 + (1− βn)(λ2
nk

2 − 1)||an − un||2

≤ ||an − a||2. (9)

Again, from (8) together with bn = αnan + (1−αn)Wnvn and a = Wna, we obtain

||bn − a||2 = ||αn(an − a) + (1− αn)(Wnvn − a)||2

≤ ||an − a||2 + (1− αn)(λ2
nk

2 − 1)||an − cn||2

≤ ||an − a||2. (10)

Thus, a ∈ Dn for {bn}.

From, (9) and (10), we get

a ∈ Dn

and hence

∩∞n=1F (Tn) ∩ Ω ⊆ Dn ∀ n ∈ N. (11)

Next, we show that

∩∞n=1F (Tn) ∩ Ω ⊂ Dn ∩Qn ∀ n ∈ N.

We prove this by induction. For n = 1, we have

∩∞n=1F (Tn) ∩ Ω ⊂ D1 and Q1 = H,

and we get

∩∞n=1F (Tn) ∩ Ω ⊂ D1 ∩Q1.

Assume ak is defined and ∩∞n=1F (Tn)∩Ω ⊂ Dk ∩Qk for some k ≥ 0. Then Dk and
Qk is closed and convex due to well defined nature of ck and bk as elements of D.
Thus Dk ∩Qk is closed and convex subset, which is nonempty since by assumption
of ∩∞n=1F (Tn) ∩ Ω. Consequently, an+1 ∈ Dn ∩Qn such that

an+1 = PDn∩Qna0,
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then

< an+1 − z, a0 − an+1 > ≥ 0 for each z ∈ Dn ∩Qn.

As especial

< an+1 − z, a0 − an+1 > ≥ 0 for each z ∈ ∩∞n=1F (Sn) ∩ Ω

and hence z ∈ Qn+1. It follows that ∩∞n=1F (Tn) ∩ Ω ⊂ Qn+1. This together with
(11) gives

∩∞n=1F (Tn) ∩ Ω ⊂ Dn ∩Qn, ∀ n.

Thus {an} is well-defined.
Step 3: Now, we show that {an} is bounded.
Since ∩∞n=1F (Tn) ∩ Ω is a nonempty closed convex subset of H, then there exist
a unique z0 ∈ ∩∞n=1F (Tn) ∩ Ω such that z0 = P∩∞

n=1F (Tn)∩Ωa0. From an+1 =
PDn∩Qna0, we have

||an+1 − a0|| ≤ ||z − a0|| for every z ∈ Dn ∩Qn and for every n ∈ N .
Since z0 ∈ ∩∞n=1F (Tn) ∩ Ω ⊂ Dn ∩Qn, we have

||an+1 − a0|| ≤ ||z0 − a0||, ∀ n ∈ N. (12)

Thus, we obtain {an} is bounded.
As an+1 ∈ Dn ∩Qn and an = PQn

a0, we have

< a0 − an,an − an+1 >≥ 0 (13)

0 ≤ −||a0 − an||2 + ||a0 − an||.||a0 − an+1||,

and therefore

||an+1 − a0|| ≥ ||an − a0||.

This together with the boundedness of the sequence {an} imply that lim
n→∞

||an−a0||
exists.
Step 4: Now, we obtain the following equalities

lim
n→∞

||an+1 − an|| = lim
n→∞

||an − cn|| = lim
n→∞

||an − tn|| = 0

and

lim
n→∞

||an −Wnan|| = lim
n→∞

||bn −Wnbn|| = 0.

Consider

||an+1 − an||2 = ||(an+1 − a0)− (an − a0)||2

= ||an+1 − a0||2 − ||an − a0||2 − 2 < an+1 − a0, an − a0 >

≤ ||an+1 − a0||2 − ||an − a0||2.

As limn→∞ ||an − a0|| exists, we get

||an+1 − a0||2 − ||an − a0||2 → 0.
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Therefore, lim
n→∞

||an+1 − an|| = 0.

Since an+1 ∈ Dn, we have

||bn − an+1|| ≤ ||an − an+1||

and

||an − bn|| ≤ ||an − an+1||+ ||an+1 − bn||
≤ 2||an+1 − an|| → 0.

Similarly, we get ||an − cn|| → 0.
Now, for each u ∈ ∩∞n=1F (Tn) ∩ Ω from (8), we have

||an − tn||2 ≤
1

(1− βn)(λ2
nk

2 − 1)
(||an − a||2 − ||cn − a||2)

≤ 1

(1− βn)(λ2
nk

2 − 1)
(||an − a||+ ||cn − a||)(||an − cn||).

Since ||an − cn|| → 0, sequence {an} and {cn} are bounded, we obtain

||an − tn|| → 0.

By the same idea as in (7), we obtain that

||un − a||2 ≤ ||an − a||2 + (λ2
nk

2 − 1)||tn − un||2.

Hence,

||cn − a||2 ≤ βn||an − a||2 + (1− βn)||un − a||2

≤ βn||an − a||2 + (1− βn)(||an − a||2 + (λ2
nk

2 − 1)||tn − un||2)

= ||an − a||2 + (1− βn)(λ2
nk

2 − 1)||tn − un||2.

It follows that

||tn − un||2 ≤
1

(1− βn)(λ2
nk

2 − 1)
(||an − a|| − ||cn − a||)||an − cn||

→ 0.

From the k-Lipschitz continuity of A, we have ||Abn −Atn|| → 0, from

||an − un|| ≤ ||an − tn||+ ||tn − un||,

we get

||an − un|| → 0.

In a similar manner and from the idea as in (7), we get

||vn − a||2 ≤ ||an − a||2 + (λ2
nk

2 − 1)||tn − vn||.



98 Savita and Monika

Hence,

||bn − a||2 ≤ αn||an − a||2 + (1− αn)(||an − a||2 + (λ2
nk

2 − 1)||tn − vn||2)

≤ ||an − a||2 + (1− αn)(λ2
nk2 − 1)||tn − vn||2.

It follows that

||tn − vn||2 ≤
1

(1− αn)(λ2
nk

2 − 1)
(||an − a||2 − ||bn − a||2)

≤ 1

(1− αn)(λ2
nk

2 − 1)
(||an − a||+ ||bn − a||)||an − bn||

→ 0,

and from

||an − vn|| ≤ ||an − bn||+ ||bn − vn||,

we have

||an − vn|| → 0.

Since cn = βnan + (1− βn)Wnun,
we find

(1− βn)(Wnun − un) = βn(un − an) + (cn − un)

and

(1− c)||Wnun − un|| ≤ (1− βn)||Wnun − un||
≤ βn||un − an||+ ||cn − un||
≤ (1 + βn)||un − an||+ ||cn − an||.

Hence,

||un −Wnun|| → 0. (14)

In a similar way, as

bn = αnan + (1− αn)vn,

we have

(1− αn)(Wnvn) = αn(vn − an) + (bn − vn)

and

(1− c)||Wnvn − vn|| ≤ (1− αn)||Wnvn − vn||
≤ αn||vn − an||+ ||bn − an||
≤ (1 + αn)||vn − an||+ ||bn − an||.
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Hence,

||vn −Wnvn|| → 0. (15)

To conclude

||an −Wnan|| ≤ ||an − un||+ ||un −Wnun||+ ||Wnun −Wnan||
≤ ||an − un||+ ||un −Wnun||+ ||un − an||
≤ 2||an − un||+ ||un −Wnun||

so

||an −Wnan|| → 0.

Similarly, from (15), we get

||bn −Wnbn|| → 0.

As, ||an −Wnan|| and ||bn −Wnbn|| → 0

On the other hand, since {an} and {bn} are bounded and from lemma (2.3), we
have

lim
n→∞

||Wnan −Wan|| = 0

and

lim
n→∞

||Wnbn −Wbn|| = 0

Therefore, we have

lim
n→∞

||an −Wan|| = 0

and

lim
n→∞

||bn −Wbn|| = 0.

Step 5: Strong convergence of {tn}, {bn}, {cn} and {an} to P∩∞
n=1F (Tn)∩Ωa0.

Furthermore, since {an} and {bn} is bounded and has a subsequence {ani
} and

{bni
} which converges weakly to some a ∈ D, hence we have

lim
j→∞

||anj −Wanj || = 0 and lim
j→∞

||bnj
−Wbnj

|| = 0.

From lemma (2.4), which gives that I −W is demiclosed at zero. Thus, a ∈ F (W ).
Since un = PDn

(an − λnAtn) and vn = PDn
(an − λnAcn), for every x ∈ Dn, we

have

< an − λnAtn − un, un − x >≥ 0 and < an − λnAcn − vn, vn − x >≥ 0

hence,

< x− un, Atn >≥< x− un,
an − un
λn

> and < x− vn, Acn >≥< x− vn,
an − vn
λn

>
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Combinig with monotonicity of A and consider sn = un + vn, we have

< x− sn, Ax > =< x− (un + vn), Ax >

=< x− un, Ax > + < x− vn, Ax >
≥< x− un, Aun > + < x− vn, Avn >
≥< x− un, Aun −Acn > + < x− un, Acn >

+ < x− vn, Avn −Abn > + < x− vn, Abn >
≥< x− un, Aun −Acn > + < x− vn, Avn −Abn >

+ < x− un,
an − un
λn

> + < x− vn,
an − vn
λn

>

Since limn→∞(an−un) = limn→∞(cn−un) = 0 and limn→∞(an−vn) = limn→∞(bn−
vn) = 0, A is Lipschitz continuous and λn ≥ l > 0, we deduce that

< x− a,Ax >= lim
ni→∞

< x− sni
, Ax >≥ 0

This implies that a ∈ Ω. Consequently, a ∈ ∩∞n=1F (Tn) ∩ Ω that is
ww(an) ⊂ ∩∞n=1F (Tn) ∩ Ω.
In (12), if we assume u = P∩∞

n=1F (Tn)∩Ωa0, we get

||a0 − an+1|| ≤ ||a0 − P∩∞
n=1F (Tn)∩Ωa0|| (16)

Notice that ww(an) ⊂ ∩∞n=1F (Tn) ∩ Ω. Then, (16) and lemma (2.5) ensure the
strong convergence of {an+1} to P∩∞

n=1F (Tn)∩Ωa0.
Consequently, {tn},{bn} and {cn} also converges strongly to P∩∞

n=1F (Tn)∩Ωa0.
Hence the result.
Remark 1: We obtain the result of [9], if infinite family of mappings reduces to
single mapping with βn = 0 and Wn = I.
Remark 2: If Qn = 0 and equation (2) reduces to two step iteration, then we
obtain Theorem 3.1 of [19].

4. Numerical Example

In this part, we give an example which supports our result.
Example: Let H = R and D = [0, 2]. Let αn = n/(n + 2), βn = n/(n + 3),
λn = 1 + 1/n, Ax = 1/3(x− 1) and Wn(x) = 2x/n.
For {an} defined in (2), we divide this procedure into 3 steps:
Setp 1: Find Dn. Since Dn = {s ∈ D : ||bn−s|| ≤ ||an−s||, ||cn−s|| ≤ ||an−s||},
we obtain (2s − (an + bn))(an − bn) ≤ 0 and (2s − (an + cn))(an − cn) ≤ 0. We
have the different cases:
Case1: If an − bn = 0, then Dn = D ∀ n ≥ 1.
Case 2: If an − bn > 0 then s ≤ a−n+bn

2 . Thus Dn = [0, an+bn
2 ] , ∀n ≥ 1.

Case 3: If an − bn < 0 then s ≥ a−n+bn
2 . Thus Dn = [an+bn

2 , 2] , ∀n ≥ 1.

Similarly, we have Dn = [0, an+cn
2 ] for an−cn > 0 and Dn = [an+cn

2 , 2] for an−cn <
0 ∀n ≥ 1.
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Thus Dn is intersection of possible cases generated due to {bn} and {cn}.
Step 2: Find Qn = {s ∈ Q :< an−s, x−an >≥ 0} = {s ∈ Q : (an−s)(x−an) ≥ 0}.
We obtain the following cases:
Case 1: If x− an = 0⇒ Qn = D.
Case 2: x− an > 0→ an − s ≥ 0⇒ s ≤ an ⇒ Qn = D ∩ [0, an].
Case 3: x− an < 0→ an − s ≤ 0⇒ s ≥ an ⇒ Qn = D ∩ [an, 2].
Step 3: Calculate the numerical result of an+1 = PDn∩Qn

a1. Take a1 = 0.19, we
obtain the Table 1 and we observe that 0 is the solution of our iteration.

Table 1. Numerical result of iteration when a1 = 0.19

n λn αn βn tn cn bn Dn ∩Qn an
1 2 0.333 0.25 0.73 0.6025 0.67 [0.24,2] 0.19
2 1.5 0.5 0.4 0.62 0.354 0.4015 [0.08075,2] 0.24
3 1.33 0.6 0.5 0.489 0.143 0.172 [0.0454,0.10925] 0.08075
4 1.25 0.67 0.5714 0.443 0.085 0.101 [0.028,0.145] 0.0454
5 1.2 0.714 0.625 0.417 0.0567 0.066 [0.0192,0.162] 0.028
6 1.167 0.75 0.67 0.4006 0.0408 0.047 [0.0139,0.171] 0.019
12 1.083 0.852 0.8 0.364 0.012 0.013 [0.0039,0.1853] 0.005
16 1.0625 0.89 0.84 0.35 0.006 0.007 [0.0023,0.187] 0.002
19 1.053 0.904 0.86 0.352 0.0048 0.0052 [0.0017,0.188] 0.0018
...

...
...

...
...

...
...

...
...

28 1.035 0.93 0.903 0.346 0.00234 0.00244 [0.00079,0.00081] 0.00086
29 1.034 0.935 0.906 0.345 0.00218 0.0022 [0.00058,0.00066] 0.00079

Figure 1. Convergence of {an}

5. Conclusion

In this paper, we proposed an algorithm to obtain its strong convergence and
calculate the common solution of the infinite family of nonexpansive mappings with



102 Savita and Monika

the variational inequality problem under some imposed conditions over algorithm.
The efficiency of the proposed algorithm has also been illustrated by numerical
example.
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