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Abstract. Consider M as a 3-homogeneous manifold. In this paper, we are going to

study the behavior of the first eigenvalue of p-Laplace operator in a case of Bianchi

classes along the normalized Ricci flow. Also we will give some upper and lower

bounds for a such eigenvalue.
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1. Introduction

Over the last few years, studying the geometric flows, specially the Ricci flow
have become a topic of active research in both mathematics and physics. Gener-
ally, a geometric flow is an evolution of a geometric structure under a differential
equation related to a functional usually associated with a curvature in a manifold.
Although, the Ricci flow was introduced first by Hamilton [10] in mathematics and
in the work of Friedan [9] in the context of string theory, Perelman has made a
current wide interests by the proof of Poincare’ conjecture using the Ricci flow in
[16].
Consider M as a manifold with Riemannian metric g0, the family g(t) of Riemann-
ian metrics on M have been called as an un-normalized Ricci flow when it satisfies
the equation

d

dt
g(t) = −2Ric (g(t)) g(0) = g0, (1)
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where Ric is known Ricci tensor of g(t).
And also one can consider the normalized Ricci flow as follow

d

dt
g(t) = −2Ric (g(t)) +

2r

n
g g(0) = g0, (2)

where r =
∫
M
Rdµ∫

M
dµ

is the average of scalar curvature.

Hamilton in [10], has shown that there is a unique solution for the Ricci flow (1),
on the interval [0, T ) for a sufficient T . Now consider g(t) as a solution of the Ricci
flow (1), the customary normalization on 3-manifolds is setting

ḡ (t̄) = ψ(t)g(t), t̄ =

∫ t

0

ψ(ν)dν,

with 1
ψ
∂ψ
∂t = 2r

n where n = 3 and r is as same as what mentioned above is average

of scalar curvature. In this case ḡ(t̄) will be the solution of normalized Ricci flow
(2).
In [16], Perelman has shown that the first eigenvalue of −∆ + R

4 is nondecreasing
under the Ricci flow. Later Cao [4] has shown the similar result for the eigenvalues
of −∆ + R

2 on a manifolds with non-negative curvature operator. Also similar

results hold for the first eigenvalue of −∆ + aR
(
a ≥ 1

4

)
along the Ricci flow, for

more details see [5, 14].
There are some other published work in monotonicity of eigenvalues of geometric
operators under some geometric flows. For example second author in [2], has studied
the evolution for the first eigenvalue of p-Laplacian along the Yamabe flow and also
in [3] shown the monotonicity of eigenvalues of Witten-Laplace operator along the
Ricci-Bourguignon flow. Also for more details in a case of p-Laplacian operator,
Wang in [17], has shown the eigenvalue estimate for the weighted p-Laplacian and
later in [18] shown the gradient estimate on the weighted p-Laplace heat equation.
Beside what mentioned before A. Abolarinwa in [1], has studied the evolution and
monotonicity of the first eigenvalue of p-Laplacian under the Ricci-harmonic flow
and also you can find some useful results in eigenvalue monotonicity of the p-Laplace
operator under the Ricci flow in [20], also Cao and Songbo Hou have worked on
monotonicity of the first eigenvalue under Ricci flow and you can see their results
in [8, 12]. Finally we will use some results of [19] in this work.
In this paper we will investigate the evolution of the first eigenvalue of p-Laplacian
operator and then we will find some bounds in a case of Bianchi classes.

2. Preliminaries and evolution equation

Let (M, g) be a locally homogeneous closed 3-manifold, there are nine classes
of such manifolds. They are divided into two groups, the first consists of H(3),
H(2)×R1 and So(3)×R1 and the other one includes R3, SU(2), SL(2,R), Heisenberg,
E(1, 1) and E(2) which are called Bianchi classes. Milnor [15], has provided a frame
{Xi}3i=1 where both the metric and Ricci tensors are diagonalized and this property
is preserved by the Ricci flow (1). Now let {θ}3i=1 be a dual to Milnor’s frame, we
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consider the metric g(t) as

g(t) = A(t) (θ1)
2

+B(t) (θ2)
2

+ C(t) (θ3)
2
,

then the Ricci flow becomes a system of ODE with three variables {A(t), B(t), C(t)}.
Consider M as a compact Riemannian manifold and u : M −→ R be a smooth func-
tion on M or we can consider u ∈ W 1,p (M) the Sobolev space. The p-Laplacian
of u for 1 < p <∞ is defined as

∆pu = div
(
|∇u|p−2∇u

)
= |∇u|p−2∆u+ (p− 2) |∇u|p−4 (Hess u) (∇u,∇u) ,

where

(Hess u) (X,Y ) = ∇ (∇u) (X,Y ) = X. (Y.u)− (∇XY ) .u X, Y ∈ χ(M).

In this case we say that λ is an eigenvalue of p-Laplace operator whenever there
exist a function u on M such that

∆pu = −λ|u|p−1u, (3)

λ (t) = inf
{∫

M

|∇u|pdµ|u ∈W 1,p (M) \ {0},
∫
M

|u|pdµ = 1
}
.

The theorem below from [19] gives us the continuity of the first eigenvalue of p-
Laplace operator.

Theorem 2.1. If g1 and g2 are two metrics which satisfy

(1 + ε)
−1
g1 ≤ g2 ≤ (1 + ε) g1,

then for any p > 1, we have

(1 + ε)
−(n+ p

2 ) λ(g2) ≤ λ(g1) ≤ (1 + ε)(
n+ p

2 ) λ(g2).

In particular λ(g(t)) is a continuous function in a t-variable.

Discussing about the monotonicity of the first eigenvalue of the p-Laplace
operator powerfully is dependent to the differentiability of the eigenvalue function.
In this section we are following the X. Cao’s argument [4], where we introduce
the smooth eigenvalue function λ(u, t) which is smooth then we can write the
monotonicity of λ(t). We assume at time t0, u0 = u(t0) is eigenfunction for the
first eigenvalue λ(t0) of p-Laplacian. Then we have∫

M

|u(t0)|pdµg(t0) = 1.

We consider the following smooth function

ϕ(t) := u0

[det (gij(t0))

det (gij(t))

] 1
2(p−1)

,

and normalize this smooth function as

u(t) =
ϕ(t)(∫

M
|ϕ(t)|pdµ

) 1
p

,
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under the Ricci flow. Now we define a general smooth function as

λ (u, t) := −
∫
M

∆pu(t).u(t)dµ

=

∫
M

|∇u|pdµ,

where u is any smooth function satisfying∫
M

|u|pdµ = 1 and

∫
M

|u|p−2udµ = 0. (4)

In general λ(u, t) is not equal to λ(t). But at time t0 we conclude that

λ (u(t0), t0) = λ(t0).

Now we are ready to give an evolution formula for λ(u, t)|t=t0 along the normalized
Ricci flow in a case of 3-homogeneous manifold. In this case it is not hard to see
R = r where R is scalar curvature and r is as same as what explained in the
definition of the normalized Ricci flow (2).

Proposition 2.2. Let (M, g(t)) be a solution of the normalized Ricci flow (2),
on a locally homogeneous 3-manifold. If λ1,p(t) denotes the first eigenvalue of the
p-Laplacian (3), then

d

dt
λ(u, t)|t=t0 = p

∫
|∇u|p−2Rijuiujdµ−

pR

3
λ(t0),

where ui = ∇iu and uj = ∇ju.

Proof. By the direct computation it will be easy to see that under the normalized
Ricci flow (2) we have

∂

∂t
|∇u|p = p|∇u|p−2

((
Rij − r

3
gij
)
uiuj + ui

∂ui
∂t

)
, (5)

and also

∂

∂t
(dµ) = − (R− r) dµ. (6)

The function λ(u, t) is smooth so it concludes that

d

dt
λ(u, t)|t=t0 =

∫
M

∂

∂t
|∇u|pdµ−

∫
M

|∇u|p (R− r) dµ

= p

∫
M

|∇u|p−2
((
Rij − r

3
gij
)
uiuj

)
dµ+ p

∫
M

|∇u|p−2ui
∂ui
∂t

dµ

−
∫
M

|∇u|p (R− r) dµ.

As we mentioned before in homogeneous manifoldR = r also the condition
∫
M
|u|pdµ =

1 results that ∫
M

|∇u|p−2ui
∂ui
∂t

dµ = 0.
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Hence

d

dt
λ(u, t)|t=t0 = p

∫
M

|∇u|p−2Rijuiujdµ−
pR

3
λ(t0)

= p

∫
M

|∇u|p−2Rijuiujdµ−
pR

3
λ(t0),

which implies what we looking for. �

3. Estimate of λ(t) on Bianchi classes

In this section we are going to give some useful bounds for λ(t) separately
in Bianchi classes. Before Hou in [11] has given bounds for the first eigenvalue
of ∆ in a case of u > 0 under the backward Ricci flow and also he proved the
eigenvalue evolves toward zero in a case that the backward Ricci flow converges to
a sub-Riemannian geometry by a proper rescaling. Later Razavi and Korouki in
[13] have done similar work for the first eigenvalue of (−∆−R) under the Ricci
flow.

Remark 3.1. In homogeneous condition and in a case of the un-normalized Ricci
flow we get that

d

dt
λ(u, t)|t=t0 = p

∫
M

|∇u|p−2Rijuiujdµ.

Now we study the behavior of the first eigenvalue of p-Laplacian in each
classes separately.
Case 1: R3

In this case all metrics are flat, so for all t ≥ 0 we have g(t) = g0 where g0 is initial
metric, therefore λ(t) is constant.
Case 2: Heisenberg
This class is isomorphic to the set of upper-triangular 3× 3 matrices endowed with
the usual matrix multiplication. Under the metric g0 we choose a frame {Xi}3i=1

in which

[X2, X3] = X1, [X3, X1] = 0, [X1, X2] = 0,

also under the normalization A0B0C0 = 1 we have

R11 =
1

2
A3, R22 = −1

2
A2B, R33 = −1

2
A2C,

R = −1

2
A2.

Theorem 3.2. Let λ(t) be the first eigenvalue of p-Laplace operator on
Heisenberg Riemannian manifold

(
H3, g0

)
and also assume that B0 ≥ C0. Then in

a sufficient neighborhood as [0, t], the quantities λ(t)e
∫ t
0 (− 2

3pA
2)dτ is nondecreasing

and λ(t)e
∫ t
0 ( 1

3pA
2)dτ is nonincreasing along the normalized Ricci flow (2), where

−1

3
pA2λ(t0) ≤ d

dt
λ(u, t)|t=t0 ≤

2

3
pA2λ(t0).
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Proof. Under the proposition 2.2 and Ricci coordinates in Hiesenberg case, we get

d

dt
λ(u, t)|t=t0 =

∫
H3

|∇u|p−2
[
g11∇1u∇1u− g22∇2u∇2u (7)

− g33∇3u∇3u
]
dµ− p

3
Rλ(t0)

≤ 1

2
pA2

∫
H3

|∇u|p−2
[
g11∇1u∇1u+ g22∇2u∇2u

+ g33∇3u∇3u
]
dµ− p

3
Rλ(t0)

=
1

2
pA2λ(t0)− p

3
Rλ(t0).

By substituting R into formula (7) we obtain

d

dt
λ(u, t)|t=t0 ≤

2

3
pA2λ(t0).

Since λ(f, t) is smooth function with respect to time t, hence in any sufficiently
small neighborhood of t0, we have

d

dt
λ(f(t), t) ≤ 2

3
pA2λ(f(t), t). (8)

Since t0 is arbitrary then for any t ∈ [0, T ) the inequality (8) holds and it implies

d

dt

(
λ(t)e

∫ t
0 (− 2

3pA
2)dτ

)
≥ 0. (9)

Therefore the quantity λ(t)e
∫ t
0 (− 2

3pA
2)dτ is nondecreasing. Also in a similar way

we have

d

dt
λ(u, t)|t=t0 ≥

1

2
pA2

∫
H3

|∇u|p−2
[
− g11∇1u∇1u− g22∇2u∇2u

− g33∇3u∇3u
]
dµ− p

3
Rλ(t0)

≥ −1

2
pA2λ(t0)− p

3
Rλ(t0)

= −1

3
pA2λ(t0).

Which implies what we are looking for. �

Remark 3.3. In this case by [11], for the tensors A,B and C we have

A = A0

(
1 +

16

3
R0t

)− 1
2

, B = B0

(
1 +

16

3
R0t

) 1
4

,

C = C0

(
1 +

16

3
R0t

) 1
4

,
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where R0 = − 1
2A

2
0. Now by substituting these formulas into the formula (7) which

is hold for arbitrary t0, and integrating from both sides in [t0, t], we get

lnλ(t) ≤ 1

2
.

pA2
0

1 + 16
3 R0

ln

(
1 +

16

3
R0t

)
,

and similarly

lnλ(t) ≥ −1

2
.

pA2
0

1 + 16
3 R0

ln

(
1 +

16

3
R0t

)
.

Case 3: E(2)
Manifold E(2) is the group of isometries of Euclidian plane. In this case we have an
Einstein metric and Ricci flow converges exponentially to flat metrics. Dependent
to the metric g0 we choose the frame {Xi}3i=0 such that

[X2, X3] = X1, [X3, X1] = X2, [X1, X2] = 0,

In this case under the normalization A0B0C0 = 1 we have

R11 =
1

2
A
(
A2 −B2

)
, R22 =

1

2
B
(
B2 −A2

)
,

R33 = −1

2
C (A−B)

2
, R = −1

2
(A−B)

2
.

X. Cao in [7] has proved that for initial tensors A0 and B0

• If A0 = B0 then A = B, in this case g(t) = g0 where g0 is constant.
• If A0 > B0 then A > B in this case we have

Theorem 3.4. Consider λ(t) as a first eigenvalue of p-Laplace operator on
3-homogeneous Riemannian manifold (E (2) , g0) and also let A0 > B0 then in a

sufficient neighborhood as [0, t], the quantities λ(t)e
∫ t
0
− 1

2p((A
2−B2)− 1

3 (A−B)2)dτ and

λ(t)e
∫ t
0

1
2p((A

2−B2)− 1
3 (A−B)2)dτ are non-decreasing and non-increasing along the

normalized Ricci flow (2), respectively, where

−1

2
p

((
A2 −B2

)
− 1

3
(A−B)

2

)
λ(t0) ≤ d

dt
λ(u, t)|t=t0

≤ 1

2
p

((
A2 −B2

)
− 1

3
(A−B)

2

)
λ(t0).

Proof. Since by [6] we have A > B and also under the proposition 2.2, we get

d

dt
λ(u, t)|t=t0 = p

∫
E(2)

|∇u|p−2
[1
2
A
(
A2 −B2

)
∇1u∇1u− 1

2
B
(
A2 −B2

)
∇2u∇2u

− 1

2
C (A−B)

2∇3u∇3u
]
dµ− p

3
R,
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where by the assumption A0 > B0 we have

d

dt
λ(u, t)|t=t0 ≥ p

∫
E(2)

|∇u|p−2
[
− 1

2
A
(
A2 −B2

)
∇1u∇1u− 1

2
B
(
A2 −B2

)
∇2u∇2u

− 1

2
C
(
A2 −B2

)
∇3u∇3u

]
dµ− p

3
Rλ(t0)

≥ −1

2
p
(
A2 −B2

)
λ(t0)− p

3
Rλ(t0).

In a similar way

d

dt
λ(u, t)|t=t0 ≤

1

2
p
(
A2 −B2

)
λ(t0)− p

3
Rλ(t0),

now apply R from above, since t0 is arbitrary it implies what mentioned before in
the theorem. �

Case 4: E(1,1)
Manifold E(1,1) is the group of isometries of the plane with flat Lorentz metric,
there is no Einstein metric here and Ricci flow fails to converge, they all are asymp-
totically cigar degeneracies. For a given metric g0 similarly by a frame {Xi}3i=0 we
have

[X1, X2] = 0, [X2, X3] = −X1, [X3, X1] = X2.

Also under the normalization A0B0C0 = 1 we obtain

R11 =
1

2
A
(
A2 − C2

)
, R22 = −1

2
B (A+ C)

2
,

R33 =
1

2
C
(
C2 −A2

)
, R = −1

2
(A+ C)

2
.

Theorem 3.5. Let λ(t) denotes the first eigenvalue of p-Laplace operator on
3-homogeneous Riemannian manifold (E (1, 1) , g0) then in a sufficient neighbor-
hood [0, t] we get

• If A0 = C0 then λ(t)e
∫ t
0 (− 1

3p(A+C)2)dτ and λ(t)e
∫ t
0 ( 1

3p(A+C)2)dτ are non-
decreasing and non-increasing along the normalized Ricci flow (2), respec-
tively, where(
−1

3
p (A+ C)

2

)
λ(t0) ≤ d

dt
λ(u, t)|t=t0 ≤

(
1

3
p (A+ C)

2

)
λ(t0).

• If A0 > C0 then λ(t)e
∫ t
0
− 1

2p((A
2−C2)− 1

3 (A+C)2)dt and λ(t)e
∫ t
0 ( 2

3p(A+C)2)dt

are non-decreasing and non-increasing respectively, where

−1

2
p

((
A2 − C2

)
− 1

3
(A+ C)

2

)
λ(t0) ≤ d

dt
λ(u, t)|t=t0 ≤

(
2

3
p (A+ C)

2

)
λ(t0).

Proof. In the case of A0 = C0 by [6] we get that A = C, it is easy to see

R11 = R33 = 0,
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which means
d

dt
λ(u, t)|t=t0 ≤

1

2
p (A+ C)

2
λ(t0)− p

3
Rλ(t0).

Similarly in a case of A0 > C0 it is easy to get

d

dt
λ(u, t)|t=t0 ≥ p

∫
E(1,1)

|∇u|p−2
[
− 1

2
A
(
A2 − C2

)
∇1u∇1u− 1

2
B
(
A2 − C2

)
∇2u∇2u

− 1

2
C
(
A2 − C2

)
∇3u∇3u

]
dµ− p

3
Rλ(t0),

and in a similar way

d

dt
λ(u, t)|t=t0 ≤

1

2
p (A+ C)

2
λ(t0)− p

3
Rλ(t0),

now similar to the above theorems, the proof is completed. �

Case 5: SU(2)
Similarly in this class we have Einstein metrics and Ricci flow converges exponen-
tially in to these metrics, also by the frame {Xi}3i=0 we have

[X2, X3] = X1, [X3, X1] = X2, [X1, X2] = X3.

In this case under the normalization A0B0C0 = 1, we have

R11 =
1

2
A[A2 − (B − C)

2
], R22 =

1

2
B[B2 − (A− C)

2
],

R33 =
1

2
C[C2 − (A−B)

2
],

where

R =
1

2

[
A2 − (B − C)

2 ]
+

1

2

[
B2 − (A− C)

2 ]
+

1

2

[
C2 − (A−B)

2 ]
.

Theorem 3.6. Consider λ(t) as a first eigenvalue of p-Laplace operator on 3-
homogeneous Riemannian manifold (SU (2) , g0) then there is a time t̃ and the
interval [t̃, t] in which we have

• If A0 = B0 = C0 then λ(t) = λ(0).
• If A0 = B0 > C0 then

λ(t)e
∫ t
t̃ (p(B−C)2− 1

2p(A
2+C2))dτ and λ(t)e

∫ t
t̃ ( 1

2pA
2((B−C)2+1))dτ

are non-decreasing and non-increasing respectively, where(
p (B − C)

2 − 1

2
p
(
A2 + C2

))
λ(t0) ≤ d

dt
λ(u, t)|t=t0 ≤

(
1

2
pA2

(
(B − C)

2
+ 1
))

λ(t0).

• If A0 > B0 ≥ C0 then

λ(t)e
∫ t
t̃

1
2p((C

2−(A−C)2)−(A2−(B−C)2))dτ and λ(t)e
∫ t
t̃

1
2p((A

2−(B−C)2)−(C2−(A−C)2))dτ

are non-decreasing and non-increasing along the normalized Ricci flow (2)
respectively, where

d

dt
λ(u, t)|t=t0 ≥

1

2
p
((
C2 − (A− C)

2
)
−
(
A2 − (B − C)

2
))

λ(t0),
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and

d

dt
λ(u, t)|t=t0 ≤

1

2
p
((
A2 − (B − C)

2
)
−
(
C2 − (A− C)

2
))

λ(t0).

Proof. By X. Cao [7], the proof of first and second section will be easy and similarly
for the third section we have

d

dt
λ(u, t)|t=t0 ≤ p

∫
SU(2)

|∇u|p−2
[1
2
A
(
A2 − (B − C)

2
)
∇1u∇1u+

1

2
B
(
A2 − (A− C)

2
)
∇2u∇2u

+
1

2
C
(
A2 − (A−B)

2
)
∇3u∇3u

]
dµ− p

3
Rλ(t0)

≤ p
∫
SU(2)

|∇u|p−2
[1
2
A
(
A2 − (B − C)

2
)
∇1u∇1u+B

(
A2 − (B − C)

2
)
∇2u∇2u

+ C
(
A2 − (B − C)

2
)
∇3u∇3u

]
dµ− p

3
Rλ(t0)

≤ 1

2
p
(
A2 − (B − C)

2
)
λ(t0)− p

3
Rλ(t0).

Also in a similar way

d

dt
λ(u, t)|t=t0 ≥ p

∫
SU(2)

|∇u|p−2
[1
2
A
(
C2 − (B − C)

2
)
∇1u∇1u+

1

2
B
(
C2 − (A− C)

2
)
∇2u∇2u

+
1

2
C
(
C2 − (A−B)

2
)
∇3u∇3u

]
dµ− p

3
Rλ(t0)

≥ p
∫
SU(2)

|∇u|p−2
[1
2
A
(
C2 − (A− C)

2
)
∇1u∇1u+

1

2
B
(
C2 − (A− C)

2
)
∇2u∇2u

+
1

2
C
(
C2 − (A− C)

2
)
∇3u∇3u

]
dµ− p

3
Rλ(t0)

≥ 1

2
p
(
C2 − (A− C)

2
)
λ(t0)− p

3
Rλ(t0),

which if you substitute R, it is completed the proof. �

Case 6: SL(2,R)
On SL (2,R) there is no Einstein metric and the Ricci flow doesn’t converge and
develops a pancake degeneracy, also by the frame {Xi}3i=0, we get

[X2, X3] = −X1, [X3, X1] = X2, [X1, X2] = X3,

in this case we also have

R11 =
1

2
A[A2 − (B − C)

2
], R22 =

1

2
B[B2 − (A+ C)

2
],

R33 =
1

2
C[C2 − (A+B)

2
].

In which

R =
1

2

[
A2 − (B − C)

2 ]
+

1

2

[
B2 − (A+ C)

2 ]
+

1

2

[
C2 − (A+B)

2 ]
.
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Theorem 3.7. Let λ(t) be the first eigenvalue of p-Laplace operator on 3-homogeneous
Riemannian manifold (SL (2,R) , g0) and also let there is a time t̃ and interval [t̃, t]
we get

• If A > B = C then

λ(t)e
∫ t
t̃

1
2p((C

2−(A+B)2)−A2)dτ and λ(t)e
∫ t
t̃

1
2p(A

2−(C2−(A+B)2))dτ ,

are non-decreasing and non-increasing along the normalized Ricci flow (2),
where

d

dt
λ(u, t)|t=t0 ≥

1

2
p
((
C2 − (A+B)

2
)
−A2

)
λ(t0),

and

d

dt
λ(u, t)|t=t0 ≤

1

2
p
(
A2 −

(
C2 − (A+B)

2
))

λ(t0).

• If A ≤ B − C then

λ(t)e
∫ t
t̃
− 1

2p((B−C)2−A2+B2)dτ and λ(t)e
∫ t
t̃
− 1

2pC
2dτ ,

are non-decreasing and non-increasing along the normalized Ricci flow (2),
where

−1

2
p
(

(B − C)
2 −A2 +B2

)
λ(t0) ≤ d

dt
λ(u, t)|t=t0 ≤ −

1

2
pC2.

Proof. By X. Cao [6, 7] we can easily calculate that

• for the first section we have

d

dt
λ(u, t)|t=t0 ≥ p

∫
SL(2,R)

|∇u|p−2
[1
2
A
(
C2 − (A+ C)

2
)
∇1u∇1u+

1

2
B
(
C2 − (A+ C)

2
)
∇2u∇2u

+
1

2
C
(
C2 − (A+ C)

2
)
∇3u∇3u

]
dµ− p

3
rλ(t0)

≥ 1

2
p
(
C2 − (A+ C)

2
)
λ(t0)− p

3
rλ(t0),

also similarly we get

d

dt
λ(u, t)|t=t0 ≤

1

2
p
(
A2 − (B − C)

2
)
λ(t0)− p

3
Rλ(t0).

• For the second section also we get

d

dt
λ(u, t)|t=t0 = p

∫
SL(2,R)

|∇u|p−2
[
− 1

2
A
(

(B − C)
2 −A2

)
∇1u∇1u+

1

2
B
(
B2 − (A+ c)

2
)
∇2u∇2u

− 1

2
C
(

(A+B)
2 − C2

)
∇3u∇3u

]
dµ− p

3
Rλ(t0)

≤ 1

2
pB2λ(t0),

also under consideration A ≤ B − C we have

(A+B)
2
> (B − C)

2
,
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now we can get

d

dt
λ(u, t)|t=t0 ≥ p

∫
SL(2,R)

|∇u|p−2
[
− 1

2
A
(

(B − C)
2 −A2

)
∇1u∇1u− 1

2
B
(

(B − C)
2 −A2

)
∇2u∇2u

− 1

2
C
(

(B − C)
2 −A2

)
∇3u∇3u

]
dµ− p

3
Rλ(t0)

≥ −1

2
p
(

(B − C)
2 −A2

)
λ(t0)− p

3
Rλ(t0),

now we should substitute R, this is making the proof complete. �
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