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Abstract. We establish some Ostrowski type inequalities involving higher-order
partial derivatives for two dimensional integrals on Lebesgue spaces (Loo, Lp and
L1). Some applications in Numerical Analysis in connection with cubature formula
are given. Finally, with the help of obtained inequality, we establish applications

for the kth moment of random variables.
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1. INTRODUCTION

Let f : [a,b]— R be a differentiable mapping on (a,b) whose derivative e

(a,b)— Ris bounded on (a,b), i.e., || f'|l, = sup |f'(t)| < oo. Then, the inequality
te(a,b)

holds:
b

JECE

a

1 (z— 2

4+x(b_§)2] O=a) /'l (1)

for all z € [a,b] [14]. The constant % is the best possible. This inequality is well
known in the literature as Ostrowski inequality.

Recently in [2], Barnett and Dragomir proved the following Ostrowski type
inequality for double integrals:
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346 S. ERDEN, M. Z. SARIKAYA

Theorem 1.1. Let f : [a,b] X [c,d]— R be continuous on [a,b] x [¢,d], f,, = ;Qg
¥ zOy
exists on (a,b) X (¢,d) and is bounded, i.e.,
82
N o e
P e(b)x(ed) | Or0y

Then, we have the inequality:

b d
/ / f(s,t)dtds — (d — ¢)(b— a) f(x, ) 2)

b

d
- (b*d)/f(l‘,lf)dlf‘i’(d*C)/f(S,y)dS

< li(b—a)Q—k (x—a;b>2

for all (z,y) € [a,b] x [c,d].

_d+

2
c
-)

In [2], the inequality (2) is established by the use of integral identity involving
Peano kernels. In [17], Pecari¢ and Vukeli¢ gave weighted Montgomery’s identities
for two variables functions. Recently, many authors have worked on the Ostrowski
type inequalities for double integrals. For example, Pachpatte obtained a new in-
equality in the view (2) by using elementary analysis in [15] and [16]. In [7], [8] and
[9], some Ostrowski type inequalities for double integrals and applications in numer-
ical analysis in connection with cubature formula are given by researchers. Authors
deduced weighted inequality of Ostrowski type for two dimensional integrals in [19]
and [20]. Some researchers established some Ostrowski type inequalities for n-times
differentiable mappings in [1], [6] and [11]. In [10], weighted integral inequalities for
one variable mappings which are n—times differentiable are obtained by Erden and
Sarikaya. The researchers established some Ostrowski type inequalities involving
higher-order partial derivatives for double integrals in [4], [12] and [21].

17l

In this study, we first establish new integral equality involving higher-order
partial derivatives. Then, some inequalities of Ostrowski type for two-dimensional
integrals are attained by using this identity. Finally, some applications of the
Ostrowski type inequality developed in this work for cubature formula and the kth
moment of random variables are given.

2. INTEGRAL IDENTITY

In order to prove generalized weighted integral inequalities for double inte-
grals, we need the following lemma:
Lemma 2.1. Let f : [a,b] x [c,d] =@ A C R2= R be a continuous function such

. L A*FLf(t,s) _ _ — _
that the partial derwatives —gza—, k = 0,1,2,..,n =1, 1 = 0,1,2,...m — 1
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exists and are continuous on A, and assume that the functions g : [a,b] — [0,00)
and h : [e,d] — [0,00) are integrable. In addition, P,_1 (z,t) and Qm-1 (y,s) are
defined by

L [ =t g, a<t<a
Poa (1) = ’
=] bft(u )" Mg du, =<t<b
and
(mil)! f(“ — )" h(u)dv, c<s<y
Qur (9,8) = ’

(mil)! J (u— s)m_1 h(u)dv, y<s<d,
d

where n,m € N\ {0}. Then, for all (z,y) € [a,b] X [c,d], we have the identity

b d
()
n—1m— 1 k4l m—1 b 1
_ Z (y) 0" flz,y) M (y / 6f(t7y)dt
- k l
— = ' l' dxk oyt — I Oy

a

A () d b d
k\T
,];) T /h( 8xk der//h f(t, s)dsdt,

where My (x) and M;(y) are defined by

My(x) zf(u—x)kg(u) du, k=0,1,2,..

Proof. We have the equality

ot f(t, s

b d
//Pn 1 .’Et Qm 1(y, )WST;)det

n+m
Py_q(z,t) {/Qm—l (y,s) st} dt.
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8n+'mf(t7s)

Applying integration by parts for partial derivatives =75-%

d
n+m
/ Qs (,5) LS 38)

on [¢, d], we obtain

otndsm

S

1 - o (L, 5)

c

S

d
1 m—1 OtT™f(t, s)
y d

M) () /Q SO ()
T m_1) atmaym1 m-2(1,8) —gra T

As we progress by this method, we get

d
Ot s) R Mily) 9" (L y) 0" f(t,s)
/Q’” 1 8) —gggm 48 = ; I ordy _/h( Tl

c

Then, we possess

b d

an+m t,
/ / Pat (2.8) Qs (3.5) LT gy ()
) | oty [ o f(t,s)
Z / L (1) Wdtf/h(s)/Pn_l (w,1) =5, - dtds.
1=

a C a

" f(ty) o1 q 0" F(ts)

Similarly, applying integration by parts for partial derivatives =5 oyt atn

on [a,b], we can write

b
3”“f(t,y)
/PTL 1 Wdt (5)

)

— 1Mk (z) OFH (2, y) /b (t)ﬁlf(t,y

%
= k! Oxk oyt )

and

b
S i X k x,S
/P,, Ly gii )dtzz%%—/g(w(t,s)dt. (6)

k=0 s

Substituting the identity (5) and (6) in (4), we deduce desired identity (3),
and thus the theorem is proved. (I
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N
3. SOME INEQUALITIES FOR gt”a L BELONGS TO LEBESGUE SPACE

We give some results for functions whose n + m.th partial derivatives are
bounded. We start with the following result.

Theorem 3.1. Let f : A C R?— R be a continuous on A such that gtna f: exist on
(a,b) x (c,d) and assume that the functions g : [a,b] — [0,00) and h : [c,d] — [0, 00)

are integrable. If 81‘"8:’]2 € Lo (A), then we have the inequality

n—1 m—1

— M y) O f(a, ) [ O,
L T - L [0
k=0 1=0 =0

a

n—1 x d k T.s ho¢
B MTQ [ =L as s [ [aesigtose.syasa

k=0

My () Mo (y)
if m and n are even numbers

y
M) [30,00) = 2 (0= )" 0y
if m is odd number and n is even numbers

< H g;;mi H M (y) [Mn@c) - 2af (uw—x)" g(u)du]

if m is even number and n is odd number

[M _zf w— )" glu )du}
x[ qu— )du}

if m and n are odd numbers

for all (z,y) € [a,b] X [c,d], where

ont™f(t, s)
otmgs™

sup
(t,s)€(a,b)x(c,d)

8n+mf B
otnos™ ||
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"+an

Proof. 1f we take absolute value of both sides of the equality (3), because grp-n
is a bounded mapping, we can write

niml gy g O e,y M) [ 0 ()
kz > = kz' z' brroy 2 /g(t) o M (1
0 =0 1=0 s
d
,ZM’“ / 8fx8d+// f(t,s)dsdt

dsdt

otnosm

IN

/ / Pt (2,8)] 1@t (3, 9)

6n+mf
31?”85’”” //'P" 1 (2, t)] |Qm—1 (y, s)| dsdt.

By definitions of P,_1 (z,t) and Qm—1 (y, s), we get

b d

[ [ 1Pus @ 011@us () st

a

= []j%g( dudt+// )dudt]
b

a |a x
s
m—1

x[/y/s%h(u)duder//%h(u)du ds].
d

c c Yy
By using the change of order of integration, we obtain

b d

/ / P (201 1@ (,9)] dsl

a

_ {/@u dw/b ]

which completes the proof.
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Remark 3.2. Under the same assumptions of Theorem 8.1 with n =m =1, then

the following inequality holds:
b

Mo(2) Mo(y) (. 5) — Mo(y) / o(t) (¢, )t (®)

b d

—Mo(x)/dh(s) f(z,s d8+//g f(t, s)dsdt
N [Ml(x)—Q/m(f—u)g(u)du] [Ml(y) —Q/y(y—u) h(U)du] ;

(&

2
< o f
- Otos

which is "weighted Ostrowski” type inequality for |||, —norm. This inequality
was deduced by Sarikaya and Ogunmez in [19].

Remark 3.3. If we take g(u) = h(u) =1 in (8), then the inequality (8) reduce to
the inequality (2).

Remark 3.4. Taking g(u) = h(u) =1, z = %t and y = <4 in (8), then we have
the inequality

b
b-a@-or* 5 5~ d-o [ 16 e ©
; a+b -
—(b—a)/f( : ,s)ds—i—//f(t,s)dsdt
b-at@-o? |0
- 16 otds||

which was given by Barnett and Dragomir in [2].

Remark 3.5. Under the same assumptions of Theorem 8.1 with g(u) = h(u) =1,
then we have the inequality

nlml 3k+lfxy mly.l ( )
;} zz; u 02k 0y lz:: / oyl (10)
ne1 d b d
—ZX’“@”)/ ds+//ftsdsdt
grtm f 2)" 4 (2 - a)"“ d—p" ' +y-—o™"
- H t”asmH (n+1)! (m+1)!

where
(b= 2+ (1) (= )
(k+1)
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and

A=y + (D' -0

Y, = 12
This inequality (10) was proved by Hanna et al. in [12].
Theorem 3.6. Let f : A C R?>— R be a continuous on A such that i naéi exist on

(a,b) x (c,d) and assume that the functions g : [a,b] — [0,00) and h : [c,d] — [0, 00)
are integrable. If % € Lo (A), then we have the inequality

n—1m— 1 m—1 b
y) 0" f(x,y) M alf(t y)
Par (1
Sy MM S AW a0 as)
k=0 1=0 1=0 2
”*Af()d o1 ( [
k(T x,s
-3 o /h(s) e ds+//h f(t, s)dsdt
k=0 ;
< gnrmf 19M10.6,00 111, d100
- Jjotrosm|| (n+1)! (m+1)!

<|o=a" +@—a)" | [@= " + = o™

for all (z.) € a8 x e ) where gy = 0P 1900} I = sup [h(0)

u€la,b u€le,d]
and

"t f(t,s)
otndsm

sup
(t,s)€(a,b)x(c,d)

8n+mf
otnos™

Proof. Taking modulus of both sides of the equality (3), because % is a
bounded mapping, we have the inequality (7). Because of boundedness g and
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h, and by definitions of P,_; (x,t) and Qm—1 (y, s), it follows that

b d

[ [ 1Pt @0l1Qums () s (14)

a C

S

h
”g”[ab] || Hcd] // / u_tn 1du /(u—s)mfldu dsdt
(n—1)!

c

T t s
+// /(u—t)"_ldu /u—sm ' du| dsdt
a y
t

d

+/b//u—t /(u—s)m Y du| dsdt

S

T b
b od| t
—|—///u—t /(u—s)m_ldu dsdt
b

r y

If we calculate the above four integrals and also substitute the results in (14), we
obtain desired inequality (13) which completes the proof. O

Corollary 3.7. Under the same assumptions of Theorem 3.6 with n = m = 1,
then the following inequality holds:

b

Mo(a) Mo(y) £ (. y) — Mo(y) / o(t) F(t,y)dt (15)
d
—Mo(x)/h(s) x,S d3—|—// f(t,s)dsdt

o f
< HatasHoo ||gH[a,b},oo ||h||[c,d]oo

[ (25 o5

which is "weighted Ostrowski” type inequality for ||-|| . —norm.

)

Remark 3.8. If we take g(u) = h(u) =1 in (15), then the inequality (15) reduce
to the inequality (2).

Remark 3.9. If we choose g(u) = h(u) = 1 in theorem 3.6, then the inequality
(13) becomes (10).
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Corollary 3.10. Under the same assumptions of Theorem 3.6 with x = “TM and
Yy = C‘gd, then we have the inequality
n—1m—1 a c a c
S M2 D) 04 (5 o) "
| | kgl
— = k! I ox*k0oy
m—1 c b C
B M () /g<t)3lf(t, %d)dt
prd 1! Oy

SM’fSJ)/dh( )8 d +// f(t,s)dsdt

ontmf ||9||[a B],00 ||h||[c oo (b — a)n+1 (d—c)™t
= | amasm D (mt1)! 2n gm

which is Ostrowski type inequality for double integrals. Thus, (16) is a higher degree
"wetghted mid-point” inequality for ||-|| . —norm.

Corollary 3.11. Choosingn =m =1 in (16), we obtain

b
M) M) F( 57 S5 = M) [ ate)se

d

b d
o) [ (s 7(5 2 s+ [ [ aOh()ft,s)dsa

(&

82f (b _ a)2 (d . 0)2
< HataSHm 191114.6),00 117211, 1o poal it

which is "weighted mid-point” inequality for double integrals.

Now, we deduce some inequalities for mappings whose higher-order partial
derivatives belongs to either L, (A) or L (A).

Theorem 3.12. Let f: A C R2— R be a continuous on A\ such that g;;g:,{z exist

n (a,b) x (¢,d) and assume that the functions g : [a,b] — [0,00) and h : [¢,d] —
[0,00) are integrable. If % € L,(A), zl? + % =1 and p > 1, then we have the
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inequality

n—Lm-— — /
u axkay oy!

k=0 1=0 =0 @

n—lM( ) d 8 f g

W (x T,8

—Z ‘ /h( o ds+//h f(t, s)dsdt

k=0 .
H ontmf ||g||[a,b],oo [e,d]oo

otngs™ » 0! (ng + 1)% m! (mg + 1)%

1
q

y)qurl}

b

<[y -] (- -

for all(@,y) € fa,b)x e d) where gl = 309, 1960)]s Wl = 00, folu)
ue|a, ue|c,

and

1

P
dsdt)

Proof. Using the properties of modulus and from Hélder’s inequality, from (3), we
find that

an—an(t S)
atnosm

an—i-mf
315"857”

nolm-1,, m—1 b
y) O f(z,y) M;(y) 'f(t,y)
kzo lzg k' u Dk oy ; Il / 9(t) g

d

—Z /d afmsd+// F(t, s)dsdt

C

b d % b d
[//P @D @ (5,9)]° dsdt] {//

a

1

ot f(t,s) ’
S gsm d dt]
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Owing to boundedness of g and h, and by definitions of P,_; (z,t) and Q-1 (v, 5),
we can write

b d a
//|Pn_1 (2,01 Q1 (3, 9)| dsdt
ot 7
||(97|L|[j,b1],)o!o (m[idi;T //(u " du dt+/ / (u—1t)" du| dt
a la z |b
yl s .
X //(ufs)mfldu //ufsm 1du ds
c lc y Id

By simple calculations, we easily deduced required inequality, and thus the theorem

is proved. [l

Corollary 3.13. Under the same assumptions of Theorem 3.12 with n = m = 1,
then the following inequality holds:

b
Mo() Mo(y)f . 9) = Mofy) / 9(0) £, ) -
b d
~ Mol /h deSJF//g f(t, s)dsdt
82
< | 1one 1
y (x —a)q+1 + (b_x)q-s-l i (y —C)(H_l n (d—y)‘“‘l L
q+1 1 ,

which is "weighted Ostrowski” type inequality for ||-|| p —norm.

Corollary 3.14. If we choose x = “T*b and y = C;d in (17), then we have the
inequality

b
Mo(a)Mow) (52, 20— woty) / o0, <5y

AwQ@X/M)fa+b d&ﬁ//m F(t, s)dsdt

(&

Q=

Q=

an (bia)l*‘r% (d*C)lJr
< 55| 190,00 1Pllie.do T
“lp 2(q+1)7 2(qg+1)
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which is "weighted mid-point” inequality for two dimensional integrals. This
inequality is a weighted Ostrowski type inequality for ||-||, —norm.

Remark 3.15. If we take g(u) = h(u) = 1 in (17), then we get

b

(b—a)(d—¢) f(z,y) — (d— o) / F(ty)dt

d b od
—(b—a)/f(x,s)ds—i—//f(t,s)dsdt

N A et
— ||0t0s » qg+1
o™ @yt
qg+1

which was proved by Dragomir et al. in [7].

Remark 3.16. Under the same assumptions of Theorem 3.12 with g(u) = h(u) =
1, then we have the inequality

n—1

m— 1 m—1
8k+lf 3;‘ y Yl ( )
2 ; 1! Dz oy ;—: / o ¢ (18

—Z /3f“d+//ftsdsdt

1 (z—a)"" 4 (b — )" i
nlm! || Ot Os™ » ng+1
M R (i
mq+ 1

where Xy () and Y;(y) are defined as in (11) and (12), respectively. The inequality
(18) was deduced by Hanna in [12].
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Corollary 3.17. Under the same assumptions of Theorem 3.12 with x = ‘17“’ and
c+d

y = 4%, then we have the inequality
nilmfl M (i) Ml( )8k+lf(a+b c+d)
! | k
— = k! I Oxk oyl

b
T M%) /g<t)8lf(t,cgd>dt

oyt

n—lM(ab)d 8k b d
k
- TQ/() e ds+//h F(t, s)dsdt

k=0 p
- H onrmf 190a,60,00  NPlleq00 (b—a)n+E (d—C)m+E
= {19tOs™ |, nl (ng + 1)% m! (mgq + 1)% 2n am

which is "weighted mid-point” inequality for double integrals. This inequality is
a higher degree weighted Ostrowski type for ||||p —norm.

Theorem 3.18. Let f : A C R?2— R be a continuous on A such that % exust
n (a,b) x (¢,d) and assume that the functions g : [a,b] — [0,00) and h : [¢,d] —

[0,00) are integrable. If gt,fé:m € Ly (A), then we have

n—1m— 1 m—1 b
y) R f(x,y) M(y / 0’f(t y)
2o dt (19)
pre ; ' l' dzkoy! ; il J oyt
M) [ o /
,Zikkfx)/h() f“ds+//h f(t, s)dsdt
k=0 B
h _ _ _ _ _ n
< ||g||[a,b],oo || H[c,d]oo (J) a) + (b x) + (b .1?) (l‘ CL)
- n! m! 2
([ -y -y =" a“+mf
2 2 atnosm

for all @.) € [a,xle.d], where gl = s10lg()], Whlleoe = S0P Jh(0)
ue|a, ue| c,

// an—i—mf t, S
S otmosm

and

n—+m
H 0 dsdt.

otndsm
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Proof. By taking absolute value of (3), we find that

n—1m— 1 m—1 /
y) O f(w,y) Mi(y) 1(t.y)
Yoy e My betoy 2 1 / WO =g
k=0 1=0 1=0 a
n—1 M d 8 ¢
e o
k=0 p
b d
8n+m t,S
< //|Pn—1 (l',t)HQm—l (y75)| ‘mngim) dsdt
8n+mf t S
G gsm dsdt.

Pt (2, 6)] 1@ (98 |//
(t, 9)6(0, b)><(c d)

<
By boundedness g and h, and because of definitions of P, (x,t) and Q-1 (v, S)

we have

[P (2, 0)| |@m—1 (y, )|

sup
(t,s)€(a,b)x(c,d)
||g||ab ||h’||('doo n n m m
< el I max (@~ 0)" (0 - @)y max {(y = )" (d = y)").
n! m!
We obtain desired inequality (19) using the identity
X+Y Y-X
max {X,Y} = ;_ —1—‘ ‘
The proof is thus completed. (I
. ; =m=1,

Corollary 3.19. Under the same assumptions of Theorem 3.18 with n =

then the following inequality holds:

b
Mo(2) Mo(y) f (z,y) — Mo(y) / o(t) f(t,y)dt (20)

d b d
—Mo()/h msd8+//g f(t, s)dsdt

o f
: H D10 H1 191110,81.00 1Ml apoe

c+d
Yl

B 42

which is "weighted Ostrowski” inequality for double integrals of the Ostrowski
type inequality for ||-||; —norm.
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Corollary 3.20. If we choose x = ‘IT“’ and y = C‘gd in (20), then we have the

inequality

d b d
—Mo(m)/h(s)f(a;b,s)ds—i—//g(t)h(s)f(t,s)dsdt

aZf (b—a)(d—c)
) e N S

which is "weighted mid-point” inequality for the two dimensional integrals of the
Ostrowski type inequality for ||-||; —norm.

Remark 3.21. If we take g(u) = h(u) =1 in (20), then we get

b

(b= a)(d=c) flag) ~ (@) [ ft.v)ie (21)
(ba)/df(x,s)ds+/b/df(t,s)dsdt
HS;J; 1 [(b;a) N a—;b_xH {(d;:) N c;d_yH ,

which is Ostrowski type inequality for ||-||; —norm.

Remark 3.22. Taking z = %rb and y = %d in (21), we get

a+b c+d
2 7 2

b
(b~ a) (d ) )= (=0 [ e

a

d b d
—(b—a)/f(a;b,s)ds—i—//f(t,s)dsdt

2
< 0 f
- Otds

(b—a)(d—rc)
4 b

1

which is "mid-point” inequality for double integrals of the Ostrowski type inequality
for |||l —norm.
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Remark 3.23. Under the same assumptions of Theorem 3.18 with g(u) = h(u) =
1, then we have the inequality

Il ) Vi) L ey) T Yily) Ot w)
le; Nt -y / ot (22

k=0 =0

a

o d b d
Xi(x) 8kf(x,s)ds
- + f(t, s)dsdt
k; ! / dac* / /

< {(x_a)n;(bﬂ)n+‘(b_x)n;(fff—a)”]
X[(y—c)n;(d—y)n+‘(d—y) (o) ]H o)

where Xy, (z) and Yi(y) are defined as in (11) and (12), respectively. The inequality
(22) was proved by Hanna et al. in [12].

Corollary 3.24. Under the same assumptions of Theorem 3.18 with x = “7“’ and
Y= c;d, then we have the inequality
nzlmzl Mk Ml(c+d) c’)’““f(‘”b c+d) (23)
! Oxk oyt
k=0 1=0
m—1 c b c
) Muyw/g®Wﬂu;%ﬁ
prd I! oyt

—Z /h d+//h f(t, s)dsdt

oy [a, b oo 1l 100 (b—a)™ (d —¢)™
- atnosm m! 2n m

which is "weighted mid-point” inequality for double integrals. Thus, (23) is a
heigher degree weighted Ostrowski type inequality for ||-||; —norm.

4. APPLICATIONS TO CUBATURE FORMULAE

We now deal with applications of the integral inequalities developed in the
previous section, to obtain estimates of cubature formula, which it turns out to
have a markedly smaller error than that which may be obtained by the classical
results. Thus the following applications in numerical integration are natural to be
considered.

Let I, ca=ap <1 < ..<zpg<z,=band J,:c=y <y < .. <
Yu—1 < yu = d be divisions of the intervals [a,b] and [c,d], & € [z;,z;41] and
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nj € [Yj,yj+1] with (i =0,...,v —1; j=0,...,u— 1). Consider the equivalent

m—1v—1p—1 7 Fit1 l
M (n; 0" f(t,m;
ST = 33y M) / o L) (24)
1=0 i=0 j=0 ’ Y
n—1lv—1p—1 (z)
Mk 51 a f 517 )
NN / (s) 5 5 ds
k=0 i=0 j=0

n—1lm—-1lv-—1 1
B— M(Z) gz M(J)( j) ak+lf(fi,77j)

] k9,
k=0 =0 =0 j=0 ! dzx ay
where M( )(gl) and M(J)( ;) are defined by
() e k
Mk (gz) = f (u_fz) g(u)duv k:071727~~~;
Xy
) it !
M (n;) = f (u—mn;) h(u)du, 1=0,1,2,..
Yj

Theorem 4.1. Let f : [a,b] X [¢,d]— R be a continuous on A such that %

exist on (a,b) x (¢,d) and assume that the functions g : [a,b] — [0,00) and h :
[e,d] = [0,00) are integrable. If atway{? € Lo (A), then we have the representation

// F(t,s)dsdt = S (f, L, Ju,€,1) + R (f, Ly I €,1)

where S (f, 1, J.,&,n) is defined as in (24) and the remainder term satisfies the
estimations:
\R(f, In, T, €5 1) (25)
H 6”+mf H ”gH[a b], 00 |h||[c d]oo

otngs™ (n+1)! (m+1)!
v—1pu—1
x 303 (@i = &)™+ G — 2™ [y — )™+ Oy — )™
i=0 j=0
for all (&,m;) € (i, Tix1] X [y, Yj+1] with (i =0,..,v—1; 7=0,...,0— 1), where
1900 o= 50> 9@l Ihlly e = S JA(w)] and
u€[z;,xiqp1] €[y, yj+1]
‘ 8n+mf H sup 3"+mf(t, S) -
otmos™ (t,s)€(ab)x(c,d) | OL"OS™ '
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Proof. Applying Theorem 3.6 on the interval [z;, z;11] %[y}, yj+1], (1 =0,...,v —1; j=0,...,u—1),
we obtain

K s m Ti+1
z:1 21 M() (&) M (1) *H f (&) E:I Ml(a) ) / g(t)wdt
k=0 1=0 I! Dk oyl Z / o
n-! M( (&) O f (&5, 9) Tiy1Yjt1
_Z k! / hs) =g s+ / / h(s)g(t)f(t,s)dsdt
T Y
< 8n+mf ||g||[£“$1+1] (o) || H lyj,yj+1],00
© lomosT e (n+DE (m 1)

x (@1 - P )" [ =)™+ (=)™
forallt=0,...,v—1; 7=0,...,p0— 1.

Summing over 4 from 0 to ¥—1 and over j from 0 to p—1 using the generalized
triangle inequality we deduce the estimations (25). (I

Remark 4.2. If we take g(u) = h(u) =1 and m =n =1 in Theorem 4.1, then we
recapture the cubature formula

b d
/ / F(ts)dsdt = S (f, I, Jun€.0) + B (f. Ly JosE01)

where the remainder R (f, 1, J,,&,n) satisfies the estimation:

|R(f, Lns Jm, §5 )] (26)
= $z+1—$z)2 T+ T 2
L EE e s o)

(Yit1 — yi)Q Yj + Yjt1 g
x [ 1 A\ 2

which was given by Barnett and Dragomir in [2].

Remark 4.3. if we consider the inequality (9), then we recapture the midpoint
cubature formula

b d
/ / F(t.8)dsdt = Sar (f.T,,.7,) + Bag (f21. 7,)

a c

where the remainder Rar(f,1,,J,) satisfies the estimation:

n—1 m—1

2
E (331‘+1 - wz E szrl
0 j=0 j=0

which was proved by Barnett and Dragomir in [2).

|RM(f7 ITL; J

)< 16 Hat@s
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New composite rules can be produced if the other results given in previous
sections are considered, but we omit details.

5. SOME APPLICATIONS FOR THE MOMENTS

Distribution functions and density functions provide complete descriptions of
the distribution of probability for a given random variable. However, they do not
allow us to easily make comparisons between two different distributions. The set of
moments that uniquely characterizes the distribution under reasonable conditions is
useful in making comparisons. Knowing the probability function, we can determine
moments if they exist. Applying the mathematical inequalities, some estimations
for the moments of random variables were recently studied (see, [3], [5], [13], [18]).

Set X to denote a random variable whose probability density function is
g : [a,b] — [0,00) on the interval of real numbers I (a,b € I, a < b) and Y to
denote a random variable whose probability density function is & : [¢,d] — R on
the interval of real numbers I (¢,d € I, ¢ < d). Denoted by M, (z) and M, (y) the
r.th central moment of the random variable X and Y, respectively, defined as

b
M, (z) = [(u—E(x))" g(u)du, r=0,1,2,..

a

and
d
=[(u—E()) h(u)du, r=0,1,2,..

where E(x) and E(y) are the mean of the random variables X and Y, respectively. It
may be noted that My(z) = Mo(y) = 1, My(z) = My(y) = 0, Ma(x) = 0%(X) and
Ms(y) = 0?(Y) where 02(X) and 02(Y) are the variance of the random variables
X and Y, respectively.

Now, we reconsider the identity (3) by changing conditions given in Lemma
2.1. Herewith, we deduce an identity involving r.th moment.

Lemma 5.1. Let f : [a,b] x [c,d] =0 A C R2= R be a continuous function such
k+1
that the partial derivatives %, k=0,1,2,....n—1,1=0,1,2,...,m—1 exists
and are continuous on A, and let X and Y be random variables whose p.d.f. are
g : la,b] = [0,00) and h : [¢,d] — [0,00), respectively. Then, for all (x,y) €
[a, b] X [c,d], we have the identity
b d

n+m
/Pn L (@08) Qs (g, 5) Lo (9)

S dsdt

\

n—1m—1 m—1 b
My,(z) My(y) 0" f(z,y) M(y 8lf(tvy)
= > - I / dt

l l k
k=0 1=0 k Oz 8y =

b
8fxs
/h Oar 5*/

(=)

h(s f(t,s)dsdt

\@,
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where n,m € N\ {0}, My(z) and M;(y) are the k' moment, and P,_ (z,t) and
Qm—1(y,s) are defined as in Lemma 2.1.

Theorem 5.2. Suppose that all the assumptions of Lemma 5.1 hold. If %

€ Lo (A), then we have the inequality

n—1m— 1 6k+f m—lM b 3lf t7
>3 M Ty~ i [ e ar )
k=0 1=0 =

a

0
_nil Mk(x)/dh(s) 855’“ +/b/dh f(t, s)dsdt
(5

a

et ) (b

an-ﬁ-mf
- || 0trOs™

for all (z,y) € [a,b] X [c,d], where

AVTMf(t, s)
otndsm

an+mf H

ot os™ (t S)E(a b)><(c d)

Proof. By similar methods in the proof of Theorem 3.1, we obtain

b
n—1m— 1 akJr f z, m—1 M alf t7
kzo ; z' 8mk§9yly) - ; l“(y) / g(t) a(yl Y g (28)
n—1 . d E it s b d
_kZOJWkk(')/h(s)aif;(k’)d‘s"‘//h(s)g(t)f(ts)dsdt
e :c —u)"” / u—x)"
- Hgt”i?s’{lH [ (u)du‘k/(n!)g(u)dudt]
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We observe that
T b

/(m_u)ng(u)du—i-/(u_x)ng(u)du

n!
a xT

IN

n! u€la,z]

L1 swp (xfu)n/g(u)dUwL sup (ux)n/bg(u)du

I
—~
8
|
S
~—

3
e}
—~
£

U
<
+
=
|
8
~

3
e}
—~
s

QU
<

A
3
i
.
8
|
&
:\
(=
|
8
S~—

3
—
)
—~

<
S~—

QU

I

b
Because g is a p.d.f., [ g(u)du = 1. Using the identity

X+Y Y- X
max {X,Y} = + —1—‘

2 2

we get

max {(x — a)", (b~ w>"}/b9<“>d“ - (b 7

+x_a—|—b "
5 .

Similarly, if we examine the other integral in (28), we obtain desired inequality
(27). Thus, the proof is completed. O

Remark 5.3. With the assumptions of theorem 5.2, then we have the represanta-
tion
b

fay) - / o(t) f(t,y)dt (29)

a
d

- / h(s)f(z, s)ds + /b /d g(t)h(s)f(t, s)dsdt

C

0% f b—a a+b d—c c+d
< — - .
Proof. If we take n = m =1 in (27), then we get the inequality (29). O

Similarly, using the other inequalities in section 3, we obtain similar results
involving r.th central moment of the random variable X and Y.
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Theorem 5.4. Let f : [a,b] X [c,d] =1 A C R?>— R be a continuous function such
that the partial derivatives %, k=0,1,1=0,1,2 exists and are continuous
on A, and let X andY be random variables whose p.d.f. are g : [a,b] — [0,00) and
h: e, d] — [0,00), respectively. Then we have
b
flag) - [ a5t (30)

d

b d
- / h(s)f (z, 5)ds + / g(Oh(s) (L, s)dsdt

o'f 2 2

< -
= Hat2352 o (X)o(Y)
for all (z,y) € [a,b] X [c,d], where
9
0t20s2

o0

9*f(t,s)
0t20s2

’ = sup
o (t,s)€(a,b)x(c,d)

Proof. If we take n = m = 2 in (28), we obtain desired inequality (30). O

Acknowledgement. The authors thanks the anonymous referees for their valuable
suggestions which let to the improvement of the manuscript.

REFERENCES

[1] Anastassiou, G., Ostrowski type inequalities, Proc. of the American Math. Soc., 123(12)
(1995), 3775-378.

[2] Barnett, N.S. and Dragomir, S.S., An Ostrowski type inequality for double integrals and
applications for cubature formulae, Soochow J. Math., 27(1) (2001), 109-114.

[3] Barnett, N.S., Cerone, P., Dragomir, S.S. and Roumeliotis, J., Some inequalities for the

dispersion of a random variable whose pdf is defined on a finite interval, J. Ineq. Pure Appl.

Math, 2(1) (2001).

Changjian, Z. and Cheung, W.S., On Ostrowski-type inequalities heigher-order partial deriva-

tives, Journal of Ineqaulities and Applications, Article ID:960672, (2010), 8 pages.

Cerone, P. and Dragomir, S.S., On some inequalities for the expectation and variance, Korean

J. Comp. & Appl. Math., 8(2) (2000), 357-380.

[6] Cerone, P., Dragomir, S.S., and Roumeliotis, J., Some Ostrowski type inequalities for n-time

differentiable mappings and applications, Demonstratio Math., 32(4) (1999), 697-712.

Dragomir, S.S., Barnett, N.S. and Cerone, P., An Ostrowski type inequality for double in-

tegrals in term of Lp-norms and Applications in numerical integrations, Anal. Num. Theor.

Approz. 2(12) (1998), 1-10.

Dragomir, S.S., Cerone, P., Barnett, N.S. and Roumeliotis, J., An inequality of the Ostrowski

type for double integrals and applications for cubature formulae, Tamsui Oxf. J. Math. Sci.,

16 (2000), 1-16.

[4

[5

7

8



368

9]
[10]
[11]
[12)
[13)
[14]
[15]
[16]
[17)
18]

(19]

20]

(21]

S. ERDEN, M. Z. SARIKAYA

Erden, S. and Sarikaya, M.Z., Some inequalities for double integrals and applications for
cubature formula, Acta Univ. Sapientiae, Mathematica, 11(2) (2019), 271-295.

Erden, S., Sarikaya, M.Z. and Budak, H., New weighted inequalities for higher order deriva-
tives and applications, Filomat, 32(12) (2018), 4419-4433.

Fink, M.A., Bounds on the deviation of a function from its averages, Czechoslovak Mathe-
matical Journal, 42(117) (1992), 289-310.

Hanna, G., Dragomir, S.S. and Cerone, P.; A General Ostrowski type inequality for double
integrals, Tamkang Journal of Mathematics, 33(4) (2002), 319-333.

Kumar, P., Moments inequalities of a random variable defined over a finite interval, J. Inequal.
Pure and Appl. Math. 3(3) (2002), article 41.

Ostrowski, A.M., Uber die absolutabweichung einer differentiebaren funktion von ihrem in-
tegralmitelwert, Comment. Math. Helv. 10 (1938), 226-227.

Pachpatte, B.G. On a new Ostrowski type inequality in two independent variables, Tamkang
J. Math., 32(1) (2001), 45-49.

Pachpatte, B.G., A new Ostrowski type inequality for double integrals, Soochow J. Math.,
32(2) (2006), 317-322.

Pecarié, J. and Vukeli¢, A., Montgomery’s identities for function of two variables, J. Math.
Anal. Appl., 332 (1) (2007), 617-630.

Roumeliotis, J., Cerone P. and Dragomir, S.S., An Ostrowski Type Inequality for Weighted
Mapping with Bounded Second Derivatives, J. KSIAM, 3(2) (1999), 107-119.

Sarikaya M.Z. and Ogunmez, H., On the weighted Ostrowski type integral inequality for
double integrals, The Arabian Journal for Science and Engineering (AJSE)-Mathematics,
36 (2011), 1153-1160.

Sarikaya M.Z.,, On the generalized weighted integral inequality for double integrals, Annals
of the Alexandru Ioan Cuza University - Mathematics, 61(1) (2015), 169-179.

Ujevi¢, N., Ostrowski-Griiss type inequalities in two dimensional, J. of Ineq. in Pure and
Appl. Math., 4(5) (2003), Article 101.



