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Abstract. In this paper, we propose the modified proximal point algorithm with
the process for three nearly Lipschitzian asymptotically nonexpansive mappings and
multivalued mappings in CAT(0) space under certain conditions. We prove some
convergence theorems for the algorithm which was introduced by Shamshad Hussain
et al. [22]. A numerical example is given to illustrate the efficiency of proximal point

algorithm for supporting our result.
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1. INTRODUCTION

The proximal point algorithm (PPA) is a method for finding a minimizers of
convex lower semicontinuous (Isc) function defined on Hilbert spaces was initiated
by Martinet [29] in 1970. The PPA has since become extremely popular among
the various researchers inclination in the theory of optimization and also exposed
many challenging mathematical problems. The rich literature on this subject has
become too extensive (see e.g. [7-9,12,13,17,18,21,24,25,36-38]). In particular, the
PPA was studied in the framework of Riemannian manifold [10,20], in Hadamard
manifold [4-6,11,27,41] and in CAT(0) space [8,14-16,34,40].

On the otherhand, Markin [28] and Nadler [31] introduced the study of fixed
points for multivalued contractions and nonexpansive mappings using the Hausdorff
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metric. Shimizu et al. [39] proved the existence of fixed points for multivalued non-
expansive mappings in convex metric space was established by Shimizu et al. [39],
i.e. he proved that every multivalued mapping T : Y — C(Y') has a fized point in a
bounded, complete and uniformly convex metric space (Y,d), where C(Y) is family
of all compact subsets of Y. In this direction to generalize the nonlinear multivalued
mappings, Kim et al. [26] introduced the nearly Lipschitzian multivalued mapping.

In 2019, Hussain et al. [22] has been introduced modified proximal point
algorithm in complete CAT(0) space (Y, d) as follows : suppose that h is a convex,
proper and lower semi-continuous function on Y. The modified proximal point
algorithm is given by for s; € Y and w,,, > 0

Prm = argmin,.cy {h(r) + ﬁdQ(ﬁ sm)}

qm = (1 - Wm)pm D Ym A" 2y, (1)
Tm = (1 - Bm)qm @D 6mBmyma
Sma1 = (1 — am)rm ® amC™apy,, Vme N .

where z,, € Pr(pm), Ym € Pr(¢m) and z,, € Pr(r,,) for each m € N. Let
{am}, {bm} and {c,, } be a sequence in [0,1] for all m € N and {7, } be a sequence
with m,, > 0 for all m € N and established some A-convergence theorems of the
proposed algorithm to common fixed points of nonexpansive mappings including a
total asymptotically nonexpansive mapping, multivalued mapping and minimizer
of a convex function.

In the view of above literature, we propose the modified proximal point algo-
rithm with the process for three nearly Lipschitzian asymptotically nonexpansive
mappings and multivalued mappings in CAT(0) space under certain conditions.
We prove A— convergence, strong and weak convergence results for the algorithm
which was defined in (1) by Shamshad Hussain et al. [22]. A numerical example
is given to illustrate the efficiency of proximal point algorithm for supporting our
result.

2. PRELIMINARIES
Throughout in this paper, we assume that
GT)={zeW: Tz =x}

denote the set of fixed point where W is subset of CAT(0) space (Y,d) and T :
W — W is a mapping. A metric space (Y,d) is called a CAT(0) space if it is
geodesically connected and every geodesic triangle in Y is atleast as thin as its
comparison triangle in the Euclidean plane.

A subset W of a CAT(0) space Y is said to be convex, if for any s, € W, we have
[s,7] C W, where

[s,r]:={ts®(1—-t)r:0<t <1}
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is unique geodesic joining s and r. In this paper, we can write ts @ (1 — ¢)r for the
unique point g in the geodesic segment joining s to r such that

d(s,q) = td(s,r), d(r,q) = (1—1t)d(s,r)
where ¢ € [0, 1].

Definition 2.1. Let {s,,} be bounded sequence in a CAT(0) space (Y,d). For any
s €Y, we put
7(s,{sm}) = lim supd(s,sm).
m— o0
Then,
1. The asymptotic radius of #({sm}) of {sm} is given by

F({sm}) = Inf{7 (s, {sm}) : s € Y}.
2. The asymptotic center A({sm}) of {sm} is the set

A({sm}) ={s € Y : *({s,sm}) = *({sm})}-
In complete CAT(0) space, A({s,}) consists of exactly one point [15].

Definition 2.2. A sequence {sm,} in a CAT(0) space (Y, d) is said to be A—convergence
to a point s € Y, if s is a unique asymptotic center of {u,} for every subse-
quence {um} of {sm}. In this case, we write Alim,, o Sy = $ of {Sm} and denote
Wa(Sm) = UA{um}), where the union is sum over all subsequences {un} of

{Sm}'

Lemma 2.3. Let Y be a geodesic space in CAT(0) space. For all s,r,q € Y and
t €[0,1], we have

(i) (1 —t)s @ tr,q) < (1 —t)d*(s,q) + td*(r,q) — t(1 — t)d?(s,7);

(ii) d((1 —t)s @ tr,q) < (1 —t)d(s,q) + td(r,q).

Lemma 2.4. ( [15]) If {sm} is a bounded sequence in a complete CAT(0) space
with A({sm}) = {s}, {um} is subspace of {sm} with A({un}) = {u}, and the

sequence {d(sm,u)} converges, then s = u.

Lemma 2.5. ( [2]) Assume that a subset of a complete CAT(0) space (Y,d) is
closed, conver and T : W — W is nearly Lipschitzian mapping. Let {sm} be a

bounded sequence in W such that Alim,, o Sy =t and limy, o0 (S, T Sm) = 0.
Then Tt =t.

Let CB(W) be a collection of all nonempty and closed bounded subsets and
P(W) be a collection of all nonempty proximal bounded and closed subsets of W,
respectively. Let H(.,.) be the Hausdorff distance on CB(W) defined by

H(A, B) = max { sup dist(s, B), sup dist(r, A)} VA, B € CB(W).
seA reB

A subset W C Y # ¢ is said to be proximal if for each s € Y, there exists an

element r € W such that

d(s,r) = dist(s, W) = inf{d(s,q) : ¢ € W}.
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It is well known that each weakly compact convex subset of a Banach space is
proximal as well as each closed convex subset of a uniformly convex Banach space
is also proximal. Many authors have been discussed fixed point in CAT(0) space
(see [1,19,32]).

Let 7 : Y — 2Y be a multivalued mapping. An element s € Y is said to fixed
point of T if s € Ts.

Definition 2.6. A multivalued mapping T : Y — CB(Y) is called nonexpansive, if
forx,y €Y and for m € N, we have
H(T™s, T™r) <d(Ts,Tr), Vs,r €Y. (2)

Definition 2.7. [26] A multivalued mapping T : Y — CB(Y) is called nearly
Lipschitzian with respect to sequence {vp}, if for x,y € Y and for m € N, there
exists a constant k,, > 0, such that

H(T"s, T™r) < ko (d(Ts,T7) + vim), Vs,r €Y. (3)

where the sequence {v,,} in [0,00) such that lim,, oo vy, = 0. The infimum of
constants kp, in (3) is called the nearly Lipschitzian constant of T™, denoted by

n(T™).

A multivalued nearly Lipschitzian mapping 7 with sequence (v,,,n(7™)) is said to
be

(1) multivalued nearly nonexpansive, if n(7™) =1 for all m € N,

(2) multivalued nearly asymptotically nonexpansive, if n(7") > 1 for all m €
N and lim, 0o n(7T™) =1,

(3) multivalued nearly uniformly k-Lipschitzian, if n(7™) < k for all m € N,

(4) multivalued nearly uniformly k-contractive, if n(7") < k < 1 for allm € N.

The following example of nearly Lipschitzian mapping given by Abbas et al. [2] as
follows.

Example 2.8. Assume that A : (0,00) — (0,00) is defined by

Als) = 1+(s)2 se(0,1]
Y72 s € (1,00);

Similarly, we define here two nearly Lipschitzian mappings in our next two examples
as follows.

Example 2.9. Assume that B : (0,00) — (0,00) is defined by
B(s) = {1 +(s)7 s5€(0,1]

2 s € (1, 00);
Here
B"x=BMy=2 VYm >2.
Thus
d(B™z,B"y) < kp(d(z,y) +vm) Ym>2
is true for ky, > 0 and for any sequence {v,} in [0, 00) with v, — 0.
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Example 2.10. Assume that C : (0,00) — (0,00) is defined by
1 T 1
o= [1 @ s
2 s € (1,00);
Here
C"r=C"y=2 Vm>2.
Thus
d(C"x, C™y) < kp(d(x,y) +vm) Vm > 2
is true for ky, > 0 and for any sequence {vy,} in [0, 00) with v, — 0.
Recall that a function h : W — (—o00,00] is convex, if for any geodesic [s,r] =

{esr(a):0<a<1}={as® (1 —a)r:0<a <1} joining s, € W, the function
h o c is convex, i.e.,

h(csr(a)) = hlas ® (1 —a)r) < ah(s) + (1 —a)h(r).

The Moreau-Yoshida resolvent of function h in the CAT(0) space is given by

1
Tn(w) = avgmin, - [(r) + 5-d*(r,5)
™
for any m > 0 and for all s € Y.
Remark 2.11. (1) The resolvent T of function h is nonexpansive for all w >

0 (see [23]).

(2) If h is convex, proper and lower semi-continuous function, then the set
of fixed point of the resolvent associated with h coincides with the set of
minimizers of h (see [7]).

Lemma 2.12. (see [23,30]) Suppose that (Y, d) is a CAT(0) space. Then for each
rs€Y andm >0

P (Tps,r) — 5= (s1) + 50Ty, ) < B(r) — B(Ts)

5 w8, 7) = 5od (s, 1) + o 8,8) < h(r ).
Lemma 2.13. ( [3]) Suppose that (Y,d) is a CAT(0) space. Then for each s €Y
and m™>pu >0

_ TTH [t

Lemma 2.14. ( [39]) Let {an}, {bm} and {cn} be sequences of nonnegative real
numbers such that

ami1 < (L4 bm)am + ¢ ¥Ym € N.

If anozl by < 00 and anozl Cm < 00, then lim,, o a,, exists.
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3. MAIN RESULTS

Theorem 3.1. Let (Y,d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y. Let T : W — P(W) be multivalued mapping and Pr be a
nonezpansive mapping. Let h : Y — (—o00,00] be a proper convex and lower semi-
continuous function and A,B,C : W — W be three nearly Lipschitzian mappings
with {km}, {vm} being nonnegative real sequences such that >~ | km < 0o and
S vm < o00. Let £ := G(A)NG(B)NG(C)NG(T) Nargmin,cyy h(r) # ¢. Let
{sm} be defined by

Pm = argmin, oy {h(r) + ﬁdQ(r, )}

qm = (1 - Cm)pm S em Az, (4)
Tm = (1 = b)) B Y @ bynim
Sm+1 = (1 - am)rm + amcmmm m € N.

where z,, € Pr(pm), Yym € Pr(gm) and z,, € Pr(ry) for each m € N. Let
{am}, {bm} and {c;,} be sequences in [0,1] for allm € N and {mp,} be a sequence
with mm, > 0 for allm € N. Then limy, o0 d(Sm,t) exists for all t € E.

Proof. Since £ # ¢. So we can assume that ¢t € £ which implies that t = At = Bt =
Ct and h(t) < h(r) for any r € W. Thus, we have

—d*(t,t) < h(r) +

27T,

——d*(r,t)

27T,

h(t) +

for each r € W, and we have t = J t for each m € N. Since p,, = Jr,,Sm and
Jr,, 18 nonexpansive, so we have

d(Pm,t) = A(Tr,, Sms Tr,,t) < d(8m, 1) (5)

Now using (4), (5) and Lemma 2.3, we have

d(Gm,t) = d((1 = cm)pm ® cm A" zm, t)

< (1= cm)d(Pm,t) + cmd(A™ 2, t)
< (1= cm)dPm,t) + cm(km(d(Zm,t) + vm))
= (1 —cn)d®m,t) + cmkmd(Zm, t) + cmkmvm
< (1= ep)dist(pm, Pr(t)) + emkm dist(zm, Pr(t)) + cmkmvm
< (I =cen)H(Pr(pm), Pr(t)) + cmbkmH(Pr(2m), Pr(t)) + cmbkmvm
< (1= cn)d(Pm,t) + cmkmd(Pm,t) + cmkmvm
= (1=cn(l—Fkn))dPm,t) + cmkmvm

(1 —cm(X = km))d(sm, t) + cmkmvm

g

A IA
Q

S

w

3

=

_|_

d(qm, t)
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where C =1 — ¢,y (1 — k) and G = ¢k Um.
Now using (4), (6) and Lemma 2.3, we have

d(rm,t) = d((1 = bp)B™Ym ® bmGm,t)
< (1= bm)d(B™Ym,t) + bmd(gm.,t)
< (1= b)) (ki (d(Yms t) + vm)) + bnd(gim,s t)
= (1 =bm)kmd(Ym,t) + (1 — b)) kmvm + bind(gm, t)
< (1= b))k dist (Y, Pr(t)) + (1 — bin) kmVim + by, dist (¢, Pr(t))
< (1= bn)kmnH(Pr(ym), Pr(t)) + (1 = b)) kmvm + b H(T (gm), Pr(t))
< (1= bm)kmd(gm,t) + (1 = b)) kmVm + bmd(gm, t)
< (1= b(l = kp))d(gm, t) + (1 — by ) krmvm
< (L= b (1 — k) (Cd(8m, t) + G) + (1 = b kv
d(rm,t) < BCd(sm,t)+BG+ F (7)

where B=1—b,,(1 — ky,) and F = (1 — by k.

Now using (4), (7) and Lemma 2.3, we have

d(Sm41,1) d((1 = am)rm @ amC™ o, t)

1 —am)d(rm,t) + amd(C™xp,, t)

Vd(Tms t) + am (ki (AT €) + Vi)

)A(Tms t) + amkmd(Tm, t) + amkmvm

1 — ay,) dist(ry, Pr(t)) + amkn dist(@,, Pr(t)) + amkmom
)
)

INIA

ININ TN
—~ AA/-\/’:A/-\/—\A
\
)
3

H(Pr(rm), Pr(t)) + amkmH(Pr(zm), Pr(t)) + amkmvm

1—am(l = kp))d(rm, t) + amkmvm
1= (1= ko)) (BCA(3, £) + BG + F ) + bt
d(Sm+1,t) < ABCd(sm,t) + ABG + AF +D (8)

where A = 1—a, (1—kp,) and D = @y kv, Since Y0k, < 0o and Yoo vy, <
oo. Therefore Y °_ | ABC < ooand Y °_, ABG+AF+D < oco. Thus, from Lemma
2.14 and inequality (8), lim,—yc0 d(Sm,t) exists and we may assume that

n%gnoo d(sm,t) =k > 0. (9)

IN

y (9), {sm} is bounded and therefore {p,,}, {gm}, {rm}, {A™sm}, {B™sm} and
{C™s,,} are bounded. O

Theorem 3.2. Let (Y,d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y. Let T : W — P(W) be multivalued mapping and Py be
a nonexpansive mapping. Let h :' Y — (—o00,00] be a proper convex and lower
semi-continuous function and A, B,C : W — W be three nearly Lipschitzian map-
pings with {km},{vm} being nonnegative real sequences such that > - km < 00,
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Yo Um < 00 and ky < 1Vm € N. Let £ := G(A)NG(B)NG(C)NG(T)N
argmin,.cy, h(r) # ¢. Let {sp,} be defined by (4). Then

(1) limy, 00 d(SMapm) =0;

(2) imyy, 00 d(Smy ASp) = limy, 00 (S, BSm) = limy, 00 d(Sm, Cspn) = 0.

Proof. (1) By Lemma 2.12, we get
1
F{d2(pmat) - dQ(vat) + d2<5m7pm)} S h(t) - h(pm)
Since h(t) < h(p,,) for each m € N, we have
d2(5mapm) < d2(3mat) - dz(pm,t). (10)
From (8) and (9), we have

limﬂ'nf d(Sm41,t) < 1in§nf(1 — am (1 = kp))d(rm, t) + limﬁinf A kO,
k< liminfd(r,,t) (11)

- m—oo

From (7), we have

limsupd(ry,,t) < limsup(l — by (1 — k) ((1 = (1 = ki ))d(Sm, t) + Crkmtm)

m—o0 m—o0

+lim sup(1 — b)) kmvm

m—ro0

limsupd(rp,,t) < k. (12)

m—roo

From (11) and (12), we have
lim d(rp,,t) =k. (13)

m—r o0

From (7) and (13), we have

lminf d(rpy,,t) < Uminf(1 — by (1 — km))d(gm, t) + liminf(1 — by ) kv,
m—r 00 m—r o0 m— o0
k< liminfd(gm,t) (14)
m—r 00

From (6) and (9), we have
limsup d(gm,t) < limsup(l — (1l — km))d(Sm,t) + limsup ¢ kpmvm

m—r o0 m—0oQ m—r o0
limsupd(gm,t) < k. (15)
m—r o0

From (14) and (15), we have
lim d(gm,t) = k. (16)

m—r 00

From (6) and (16), we have
liminf d(gm,t) < lminf(l — (1 — km))d(Pm, t) + liminf ¢, ks,
m—r oo

m—r o0 m— 00

k< liminfd(pm,t). (17)

- m—00

From (6), we have
lim sup d(pm,, t) < limsup d(sm,t) < k. (18)

m—r o0 m—r o0
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From (17) and (18), we have

Jim d(pm, t) = k. (19)
So from (10), we have
mliglOO d(SmyDm) = 0. (20)

(2) Suppose that £ is nonempty, and let t € £. From (9), lim,, o0 d(Sm,t) exists
and {s,,} is bounded. From (4) and Lemma 2.3, we have

d*(gm,t) = d*((1 = cm)Pm © cmA™ 2, 1)
< (1 - Cm)dz(pvm ) + Cde(A Zms ) - Cm(l - Cm)dz(pwu Amzm)
S (1 - Cm)d2(pm7 ) + Cm(k d(zm; ) + Um)z - Cm(l - cm)d2(pm; Amzm)

Cm(kmd(2m, 1) + 0m)2 + (1 = ) d% (Pms 1) — (1 — €)d* (Prmy A™ 20

= cm(k2,d* (2, t) + V2, 4 2kmvmd(2m, 1)) + (1 — ) d* (P, 1)
—cm(1 = ) d* (Pmy A" 2m)

= k2 d* (2, t) + (1 = ) d? (P t) + o (V2 + 2k v d (2, 1))
—cm(1 = ) d* (P, A 2

= k2, dist(zm, Pr(1)? + (1 — ¢p) dist(pm, Pr(t))?
+Cm (V2,4 2k vy dist (20, Pr (1)) — (1 — ) d? (D, A™ 21)

= cnk H(Pr(pm), Pr(1)® + (1 = e H(Pr(pm), Pr(t))?
FCm (V2 + 2k H(Pr(pm), Pr(t)) — em(1 = ) d* (P, A™ 20

= k2 d*(pm,t) + (1 = cn)d* (P, t) + o (V2 + 2k 00 )d (P, 1)
—cm(1 = ) d* (P, A 2

= cnd®*(Pm,t) + (1 — ) d*(Pms t) + o (V2, + 2k )d(Prms t)
—cm(1 = ) d? (Pmy AT 2

= (P, t) + em (V2 + 2k d(Pms t) — cm (1 — ) d? (Dmy AT 2m)

= d®(Pmst) + pom — (1 = ) d* (Pmy A" 2

where p = ¢ (U + 2k )d(Pm, t) > 0. Therefore,
em(1 = ) (A" 2, pn) < AP (s t) = & (g t) + PO

Since lim,, o0 Uy = 0, we have ¢, (1 — ¢,)d?(A™ 2, D) = 0.
From liminf,, oo ¢m (1 — ¢p) > 0, we have

lim d(A™zm,pm) = 0. (21)

m— o0
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From (4) and Lemma 2.3, we have

INIA

d? (1, t) = d*((1 = b)) B™Ym @ b, 1)
(]- - bm d2( ym7 ) + bde(Qm:t) - bm(]- - bm)d2(Bmyma qm)

) =
)
1—by)
)
)

( (Emd(Wm s t) + 0m)? + bind gy t) — by (1 = by )d* (B Ym, Gim)
(1 = b)) (kmd(Yms t) + Vm)? + byd®(@ms t) — b (1 = b1} d* (B™ Y, Gim)
(1 —bm (krgnd (Y t) + U72n + 2kmvmd(ymat)) + bmdz(Qma t)

_bm(l - bm)dz(Bmyrm Qm)

(1= b)) k2, d* (Y t) + bind® (@ t) + (1 = b)) (v2, + 2kimVmd(Ym, 1))
b (1 — bm)dz(Bmymaqm)

(1 — by ) k2, dist(ym, Pr(t))? + by, dist (g, Pr(t))?

+(1 = b)) (02, + 2k v dist (Y, Pr (1)) = by (1 — b)) d2(B™ Y, @)
(1 = b))k, H(Pr (ym), Pr(t))? + b H(Pr(gm), Pr(t))”

(
)

+(1 = bm) (U7, + 2k 0 H (P (am); Pr(t))) = b (1 = b )d* (B™ Y, i)
(v

(1 - bm)kfnd2(Qmat) + bde(Qma ) (1 - bm) ?n + 2kmUTn)d(Qmat)
*bm(l - bm)d2(Bmym7qm)

(1 = b)) d* (g, t) + bind? (@, t) + (1 = b)) (02, + 2K )d(qm, t)
_bm(l - bm)d2(Bmyqum)

d* (G, t) + (1 = b)) (V2 + 2k ) d(gm, t)

~bin (1 = byn)d* (B Yrm Gim)

d* (g t) + qum — b (1 = b )d*(B™ Yo, Gin)

where ¢ = (1 — by) (Vi + 2k )d(gm, t) > 0. Therefore

b (1 = b ) A2 (B Yy @) < d*(qms ) — d* (i, t) + qUpn.

Since lim,,, o0 Vs, = 0, we have

b (1 = b)) (B™ Y, @) = O.

From liminf,, s b (1 — by,) > 0, we have

lim d(B™Ym, ¢m) = 0.

m—r o0
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Similarly from (4) and Lemma 2.3, we have

d*(smg1,t) = d*((1 = am)Tm @ 0 C™ 20, )
(1 = am)d? (1, ) + amd®(C"Zpy, ) — A (1 = @ )d> (7, C™ )
(1 = @) d? (1, ) + A (ki (T, 1) + V)% = A (1 = @ )d> (1, C™ )
A (B (@ 1) 4+ v3)? + (1 = ) d2 (1 t) — am (1 — ap)d2 (1, C™2y,)
am(k:?nd2(:nm, t) + 02, + 2k v d (2, 1) + (1 = @ )d? (1, 1)
— A (1 = @) A? (T, C™ 1)
= amk2,d*(Xm,t) + (1 = @) d* (P, t) + am (V2, + 2k v d (2, 1))
— (1 = @) d? (T, C™ )
= apk?, dist(z,, Pr(t))* + (1 — ay) dist(ry,, Pr(t))* + am (v2,
42k U dist (2, Pr(2))) — am (1 = @) d?(rm, C™2p)
= amkmH(Pr(rm), Pr(t))? + (1 — am)H(Pr(rm), Pr(t))? + am(vh,
42k U H(P7 (1), P7 (1)) = @ (1 = @ )d* (7, C™ )
= amk2d*(rm,t) + (1 = ) d* (T, t) 4 am (V2 + 2k v )d(rm, 1)
—am (1 = ap)d?* (1, C™ 20,
= amd® (T, t) + (1 = ap)d> (7, t) + @ (V2,4 2km v )d(Tm, )
—am (1 = )2 (T, C™ )
= d*(rp,t) + am (V2 + 2k v )d(Tm, t)
— A (1 = )2 (T, C™ 1)
= Py, t) + 10 — @ (1 — ) d* (T, C™ 1)

IAIA

where r = ap, (U + 2k )d(rm, t) > 0. Therefore
A (1 = am)d*(C™ 2, ) < d*(Ppy ) — d*(Sms1st) + T
Since lim,,, o0 v, = 0, we have
A (1 = ap)d*(C™ 2, ) = 0.

From liminf,, o0 @m (1 — @) > 0, we have

lim d(C™xzp,rm) = 0. (23)
m—0o0
From (20) and (21), we have
d(Gm> sm) = d((1 = cp)pm © cm A" 2m, 5m)

)
(1 = cm)d(Pm, Sm) D cmd(A™ 2m, Sm)
(1 = cm)d(pms $m) ® cm(d(A™ 2m, Pm) + APy Sm))
= (1 —cn)dPm,sm) ® cmd(A™ 2m, Pm) + cmd(Pm, Sm))
= d(Pm,Sm) D cmd(A™ 2, Pm)
— 0 asm — oo. (24)

IN A
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From (22) and (24

d(rm, Sm)

From (23) and (25

d(5m+1; Sm)

S. DASHPUTRE, PADMAVATI, AND K. SAKURE

), we have

INIA

%

d((1 = b)) qm D b B" Y, Sim)

(1 = bi)d(Gms Sm) @ bmd(B™ Y, Sm.)

(1 = bim)d(gm» sm) G b (d(B" Y, gm) + d(qm, Sm))
(1 = bim)d(gm» sm) © bind(B" Y, @) + bind(gm, $m))
A(Gm> $m) & b d(B" Y, qm)

0 as m — oo. (25)

), we have

INIA

d

d((1 = am)rm @ amC™ T,y Sm)

(1 = am)d(rm, Sm) ® amd(C™ Ty, Sm)

(1 = am)d(rm, Sm) ® am (d(C™ Ty, ) + d(Tmy Sm))

(1 = am)d(rm, $m) @ amd(C™ Ty ) + amd (T, Sm.))
ATy Sm) ® amd(C™ Ty 7))

0 asm — oo. (26)

By the triangular inequality, (20) and (21),

A(A™ S, Sm)

LA A IA A

d(A" sy, A 2) + d(A™ 2y D) + APy Sm)

km(d(8m, 2m) + vm) + d(A™ 200, D) + AP, Sm)

ki (H(Pr$m, Przm) + vm) + d(A™ 2, pm) + d(pm, 5m)
km(d(Sm, pm) + vm) + d(A™ 2, Pm) + d(Pm, Sm)

0 asm — oo. (27)

By the triangular inequality, (22) and (24),

d(B™ S, Sm)

LOINIANIN A

d(B" S, B™Ym) + d(B™Ym, @m) + d(@m, Sm)

ko (d(8ms Ym) + vm) + d(B™ Y, @m) + d(Gm, Sm)

ki (H(Pr8m, Prym) + vm) + d(B" Y, @) + d(@m, Sm)

ki (d(8m, @m) + vim) + d(B" Y, @m) + d(gm; Sm)

0 asm — oo. (28)

By the triangular inequality, (23) and (25),

A(C™ S, Sm)

LA A IA A

A(C™ 8, C™ k) + d(C" Ty ) + ATy Sim)

km(d($m, Zm) + vm) + d(C" Y, "'m) + d(Tmy Sm)
km(H(PySm, Pram,) + vm) + d(C" T,y rm) + A, Sm)
Em(d(SmyTm) + vm) + d(C" Ty ) + A(Fimy Sm)

0 asm — 0. (29)
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From (26) and (27), we have
A(Sm, ASm) d(Sm, Sm+1) + d(Sm+1, Am+18m+1) + d(AerlsmH, Am+1sm)
+d(A™ s, As,,)
< d(Smy Sm+1) + d(Sm1, Am+1sm+1) + ke (d(Sm+1, Sm) + vm)
+hm (d(A™ Sy Sm) + Um)
— 0 asm — oo. (30)

From (26) and (28

(
d(Sm,Bsm) < d(Sm,Sma1) + d(Sma1, B"  spmyn) +d(B™ s, 0, B s))
+d(B™ 5., Bsy)

IA

), we have

é d(sm, 3m+1) + d(5m+1a Bm+lsm+l) + km(d(sm+17 SM) + ’Um)
+km (d(B™ Sy Sm) + Vi)
— 0 asm — oo. (31)
From (26) and (29), we have
A(5msCsm) < d(Sms Smr1) + d(Smp1, O™ sppn) + d(C™Hspy1, C™ syy)

+d(C™ s, Csim)

< d(SmySma1) F d(Sma1, C™ s 1) + Ep (d(Smst1s Sm) + Um)
+k (A(B™ 81, Sm.) + Um)
— 0 asm — oo (32)

O

Theorem 3.3. Let (Y,d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y. Let T : W — P(W) be multivalued mapping and Pr be a
nonezpansive mapping. Let h : Y — (—o00,00] be a proper convex and lower semi-
continuous function, A,B,C : W — W be three nearly Lipschitzian mappings.
Then {sm} defined in (4) is A—convergent to a common fized point of E.

Proof. From Lemma 2.13 and (20), we have

A(Tsmysm) < AT Sm,pm) + APy Sm)
= d(jsmv jwmpm) + d(pm, Sm)
= d(jsmajﬂ'( 71__ jﬂ'msm@i)) —|—d(pm,8m)
S d(3m7 (1 - 7);777m5m @ 78771) + d(pm7 Sm)
™
S (]- - E) (va jﬂmsm) + ad(smﬂ Sm) + d(pm, Sm)
< (1 — l)d(sm,pm) + d(pwu Sm)

Tm
— 0 asm — oo. (33)
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By Theorem 3.1, we have lim,, o d(Sm,t) exists for all t € £ and

n}gnoo d(Sm, ASm) = Tr}gnoo d(Sm, Bsm) = n}gnoo d(Sm, Csm) = 0.

Now we have to show that

Wa(8m) = UgunycfsmiA{um}) C E.

Let uw € WA (8, ). Then there exists a subsequence {u,, } of {s,,} such that A(u,,}) =
{u}. From Definition 2.2, there exists a subsequence {v,,} of {u;,} such that
A — limy, o0 vy = v for some v € W. By Lemma 2.5, v € £. By Lemma 2.4,
u = v. This shows that Wa ({sm}) C €.
Now we have to prove that the sequence {s,,} A—converges to a point in £, which
will prove that W ({s}) consists of exactly one point. Let {u,,} be a subsequence
of {sp} with A(up,}) = {u}, and let A(sp,}) = {s}. Since v € Wa({sm}) C &
and {d(sm,u)} converges by Lemma 2.4, we have s = u. Therefore Wa ({sm}) =
O

{s}-

Corollary 3.4. Let (Y,d) be a complete CAT(0) space and W be a nonempty
closed convex subset of Y. Let T : W — P(W) be multivalued mapping and Py, be
a nonexpansive mapping. Let h : Y — (—o00, 00| be a proper convex and lower semi-
continuous function and A,B,C : W — W be three nearly Lipschitzian mappings
and zm € Pr(Dm), Ym € Pr(am), Tm € Pr(rm), {am}, {bm}, {cm} and m,, satisfy
all the conditions of Theorem 8.1. Let {s,,} be sequence defined by (4). Then the
sequence {sn,} converges weakly to a common point in E.

Now we construct and prove strong convergence theorems.
Let W be a nonempty closed convex subset of CAT(0) space (Y,d). A family
{A, B,C, T} of mappings is said to satisfy Condition (£), if there exists a nonde-
creasing function h : [0,00) — [0, 00) with A(0) = 0 and h(w) > 0 for all w € (0, c0)
such that
d(s, As) > h(d(s, ).

d(s,Bs) > h(d(s,G)),
d(s,Cs) > h(d(s,G)),

d(s,Ts) > h(d(s,G)),
for all s € Y, where G = G(A)NG(B)NG(C)NG(T).

Theorem 3.5. Let (Y,d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y. Let T : W — P(W) be multivalued mapping and Pr be a
nonexpansive mapping. Let h 1Y — (—o0, 00| be a proper conver and lower semi-
continuous function and A,B,C : W — W be three nearly Lipschitzian mappings
and zm € Pr(pm), Ym € Pram), 2m € Pr(rm), {am}, {bn}, {cm} and {7}
satisfy all the conditions of Theorem 3.1 and {A, B,C, T} satisfy the Condition
(E). Then the sequence {sy} defined in (4) strongly converges to an element of £.
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Proof. From Theorem 3.1, we have lim,, o d(sm,t) exists for all ¢ € £. Also it
follows that lim,, o d(8m, E) exists. On the otherhand, by Condition (£), we have

lim d(d(sm,&)) > lim d(sm,Asm) = 0.
m—0o0

m— 00
or
. S _
mlgnoo d(d(sm,&)) > n}gnoo d(Sm, Bsm) = 0.
or
: S _
n}gnoc d(d(sm,E)) > n}gnoo d(Sm, Csm) = 0.
or

lim d(d(sm,€)) > lim d(sm, Trsm) = 0.

m—r 00 m—r o0

Thus, we have lim,;, oo d($m, ) = 0. Using the property of h, we have
lim d(spm,E&) =0.

m—0o0
Therefore, {s,,} is a Cauchy sequence in Y, and so {s,,} converges to a point t € Y’
and hence d(t,€) = 0. Since € is closed, so we have t € £. O

Remark 3.6. (1) Our results extends the results of Hussain et al. [22] in the
framework of CAT(0) spaces. They established convergence theorems for
different classes of generalized nonerpansive mappings including a total
asymptotically nonexpansive mapping, a multivalued mapping, and a min-
mmizer of a convex function for solving the convex minimization problem
and the common fixzed point problem.

(2) Our results is generalization of the results of Pakkaranang et al. [33] in
the framework of CAT(0) spaces. They established convergence theorems
for three asymptotically quasinonexpansive mappings involving the conver
and lower semi-continuous function for solving the conver minimization
problem and the common fixed point problem.

4. NUMERICAL EXAMPLES

In this section, we discuss a numerical result to illustrate the convergence of
the iterative algorithm (4) to support our example.

Example 4.1. Consider Y = R with its usual metric, then'Y is complete CAT(0)
space (see [35, Example 3]). Assume that C = [0,5000]. Here C is closed and
bounded subset of Y. Let T : C' — P(C) be a mapping defined by

3s+4 }

7(s) = { 5

It is clear that the mapping T is nonexpansive.

Vs e C. (34)
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TABLE 1. Numerical values of s,,, [|$m — Sm—1]]2 and h(s.,)

No. of iterations Sm I$m — Sm—1ll2 h(sm)

m=1 50 - 1269.2

m=2 2.59511 47.4049 3.60534
m=3 1.99745 0.59766 1.99389
m=4 1.99841 0.00095 1.99618
m=>5 1.99903 0.00062 1.99767
m=6 1.99931 0.00028 1.99835
m=7 1.99947 0.00015 1.99872
m=38 1.99956 0.00009 1.99895
m=9 1.99962 0.00006 1.99910
m=10 1.99967 0.00004 1.99921
m=11 1.99970 0.00003 1.99929
m=12 1.99973 0.00003 1.99935
m=13 1.99975 0.00002 1.99940
m=14 1.99977 0.00002 1.99944
m=15 1.99978 0.00001 1.99947
m=16 1.99979 0.00001 1.99950
m=17 1.99980 0.00000 1.99952
m=18 1.99981 0.00000 1.99954
m=19 1.99981 0.00000 1.99956
m=20 1.99981 0.00000 1.99956

Now we define a mapping h : Y — (—o0, 00] such that

1 3 4
h(s) = lsll + 53 - 25 - =

It is easy to check that h is a proper convex and lower semi-continuous func-
tion and consider the nearly Lipschitzian mappings A, B, C' from definitions (2.8),
(2.9) and (2.10), respectively and 7 is nonexpansive mapping with G(A) NG(B) N
G(C)NG(T) = {2}. Suppose that a,, = 31=3 p, = L3 and ¢, = 3m=T and
s1 = 50 is the initial value. We obtain the numerical results with the errors values
in Table 1. From Table 1, Figure 1 and Figure 2, it is clear that the sequence {s,, }
converges to 1.99999 = 2 which is common fixed point of solution of a minimizer of
a function h, multivalued mapping 7 and three nearly Lipschtzian mappings A, B
and C.

5. CONCLUSION

In this paper, we proved the A—convergence, strong and weak convergence re-
sults for the modified proximal point algorithm for three nearly Lipschitzian asymp-
totically nonexpansive mappings and multivalued mapping in CAT(0) space. Also,
we illustrated the efficiency of modified proximal point algorithm by numerical
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example in CAT(0) space for supporting our results. The results in this paper
generalized the results of Hussain et al. [22] and Pakkaranang et al. [33].
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