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1. Introduction

The proximal point algorithm (PPA) is a method for finding a minimizers of
convex lower semicontinuous (lsc) function defined on Hilbert spaces was initiated
by Martinet [29] in 1970. The PPA has since become extremely popular among
the various researchers inclination in the theory of optimization and also exposed
many challenging mathematical problems. The rich literature on this subject has
become too extensive (see e.g. [7–9,12,13,17,18,21,24,25,36–38]). In particular, the
PPA was studied in the framework of Riemannian manifold [10, 20], in Hadamard
manifold [4–6,11,27,41] and in CAT(0) space [8, 14–16,34,40].

On the otherhand, Markin [28] and Nadler [31] introduced the study of fixed
points for multivalued contractions and nonexpansive mappings using the Hausdorff
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metric. Shimizu et al. [39] proved the existence of fixed points for multivalued non-
expansive mappings in convex metric space was established by Shimizu et al. [39],
i.e. he proved that every multivalued mapping T : Y → C(Y ) has a fixed point in a
bounded, complete and uniformly convex metric space (Y, d), where C(Y ) is family
of all compact subsets of Y . In this direction to generalize the nonlinear multivalued
mappings, Kim et al. [26] introduced the nearly Lipschitzian multivalued mapping.

In 2019, Hussain et al. [22] has been introduced modified proximal point
algorithm in complete CAT(0) space (Y, d) as follows : suppose that h is a convex,
proper and lower semi-continuous function on Y . The modified proximal point
algorithm is given by for s1 ∈ Y and πm > 0

pm = argminr∈Y

{
h(r) + 1

2πm
d2(r, sm)

}
qm = (1− γm)pm ⊕ γmAmzm,
rm = (1− βm)qm ⊕ βmBmym,
sm+1 = (1− αm)rm ⊕ αmCmxm, ∀m ∈ N .

(1)

where zm ∈ PT (pm), ym ∈ PT (qm) and xm ∈ PT (rm) for each m ∈ N . Let
{am}, {bm} and {cm} be a sequence in [0, 1] for all m ∈ N and {πm} be a sequence
with πm > 0 for all m ∈ N and established some ∆-convergence theorems of the
proposed algorithm to common fixed points of nonexpansive mappings including a
total asymptotically nonexpansive mapping, multivalued mapping and minimizer
of a convex function.

In the view of above literature, we propose the modified proximal point algo-
rithm with the process for three nearly Lipschitzian asymptotically nonexpansive
mappings and multivalued mappings in CAT(0) space under certain conditions.
We prove ∆− convergence, strong and weak convergence results for the algorithm
which was defined in (1) by Shamshad Hussain et al. [22]. A numerical example
is given to illustrate the efficiency of proximal point algorithm for supporting our
result.

2. Preliminaries

Throughout in this paper, we assume that

G(T ) = {x ∈ W : Tx = x}

denote the set of fixed point where W is subset of CAT(0) space (Y, d) and T :
W → W is a mapping. A metric space (Y, d) is called a CAT(0) space if it is
geodesically connected and every geodesic triangle in Y is atleast as thin as its
comparison triangle in the Euclidean plane.
A subset W of a CAT(0) space Y is said to be convex, if for any s, r ∈ W, we have
[s, r] ⊂ W, where

[s, r] := {ts⊕ (1− t)r : 0 ≤ t ≤ 1}
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is unique geodesic joining s and r. In this paper, we can write ts⊕ (1− t)r for the
unique point q in the geodesic segment joining s to r such that

d(s, q) = td(s, r), d(r, q) = (1− t)d(s, r)

where t ∈ [0, 1].

Definition 2.1. Let {sm} be bounded sequence in a CAT(0) space (Y, d). For any
s ∈ Y, we put

r̂(s, {sm}) = lim
m→∞

sup d(s, sm).

Then,
1. The asymptotic radius of r̂({sm}) of {sm} is given by

r̂({sm}) = inf{r̂(s, {sm}) : s ∈ Y }.
2. The asymptotic center A({sm}) of {sm} is the set

A({sm}) = {s ∈ Y : r̂({s, sm}) = r̂({sm})}.

In complete CAT(0) space, A({sm}) consists of exactly one point [15].

Definition 2.2. A sequence {sm} in a CAT(0) space (Y, d) is said to be ∆−convergence
to a point s ∈ Y , if s is a unique asymptotic center of {um} for every subse-
quence {um} of {sm}. In this case, we write ∆ limm→∞ sm = s of {sm} and denote
W4(sm) := ∪A({um}), where the union is sum over all subsequences {um} of
{sm}.

Lemma 2.3. Let Y be a geodesic space in CAT(0) space. For all s, r, q ∈ Y and
t ∈ [0, 1], we have
(i) d2((1− t)s⊕ tr, q) ≤ (1− t)d2(s, q) + td2(r, q)− t(1− t)d2(s, r);
(ii) d((1− t)s⊕ tr, q) ≤ (1− t)d(s, q) + td(r, q).

Lemma 2.4. ( [15]) If {sm} is a bounded sequence in a complete CAT(0) space
with A({sm}) = {s}, {um} is subspace of {sm} with A({um}) = {u}, and the
sequence {d(sm, u)} converges, then s = u.

Lemma 2.5. ( [2]) Assume that a subset of a complete CAT(0) space (Y, d) is
closed, convex and T : W → W is nearly Lipschitzian mapping. Let {sm} be a
bounded sequence in W such that ∆ limm→∞ sm = t and limm→∞ d(sm, T sm) = 0.
Then T t = t.

Let CB(W) be a collection of all nonempty and closed bounded subsets and
P(W) be a collection of all nonempty proximal bounded and closed subsets of W,
respectively. Let H(., .) be the Hausdorff distance on CB(W) defined by

H(A,B) = max
{

sup
s∈A

dist(s,B), sup
r∈B

dist(r,A)
}

∀A,B ∈ CB(W).

A subset W ⊂ Y 6= φ is said to be proximal if for each s ∈ Y , there exists an
element r ∈ W such that

d(s, r) = dist(s,W) = inf{d(s, q) : q ∈ W}.
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It is well known that each weakly compact convex subset of a Banach space is
proximal as well as each closed convex subset of a uniformly convex Banach space
is also proximal. Many authors have been discussed fixed point in CAT(0) space
(see [1, 19,32]).

Let T : Y → 2Y be a multivalued mapping. An element s ∈ Y is said to fixed
point of T if s ∈ T s.

Definition 2.6. A multivalued mapping T : Y → CB(Y ) is called nonexpansive, if
for x, y ∈ Y and for m ∈ N , we have

H(T ms, T mr) ≤ d(T s, T r), ∀s, r ∈ Y. (2)

Definition 2.7. [26] A multivalued mapping T : Y → CB(Y ) is called nearly
Lipschitzian with respect to sequence {vm}, if for x, y ∈ Y and for m ∈ N , there
exists a constant km ≥ 0, such that

H(T ms, T mr) ≤ km
(
d(T s, T r) + vm

)
, ∀s, r ∈ Y. (3)

where the sequence {vm} in [0,∞) such that limm→∞ vm = 0. The infimum of
constants km in (3) is called the nearly Lipschitzian constant of T m, denoted by
η(T m).

A multivalued nearly Lipschitzian mapping T with sequence (vm, η(T m)) is said to
be

(1) multivalued nearly nonexpansive, if η(T m) = 1 for all m ∈ N,
(2) multivalued nearly asymptotically nonexpansive, if η(T m) ≥ 1 for all m ∈

N and limm→∞ η(T m) = 1,
(3) multivalued nearly uniformly k-Lipschitzian, if η(T m) ≤ k for all m ∈ N,
(4) multivalued nearly uniformly k-contractive, if η(T m) ≤ k < 1 for allm ∈ N.

The following example of nearly Lipschitzian mapping given by Abbas et al. [2] as
follows.

Example 2.8. Assume that A : (0,∞)→ (0,∞) is defined by

A(s) =

{
1 + (s)

1
2 s ∈ (0, 1]

2 s ∈ (1,∞);

Similarly, we define here two nearly Lipschitzian mappings in our next two examples
as follows.

Example 2.9. Assume that B : (0,∞)→ (0,∞) is defined by

B(s) =

{
1 + (s)

1
3 s ∈ (0, 1]

2 s ∈ (1,∞);

Here
Bmx = Bmy = 2 ∀m ≥ 2.

Thus
d(Bmx,Bmy) ≤ km(d(x, y) + vm) ∀m ≥ 2

is true for km ≥ 0 and for any sequence {vm} in [0,∞) with vm → 0.
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Example 2.10. Assume that C : (0,∞)→ (0,∞) is defined by

C(s) =

{
1 + (s)

1
4 s ∈ (0, 1]

2 s ∈ (1,∞);

Here

Cmx = Cmy = 2 ∀m ≥ 2.

Thus

d(Cmx,Cmy) ≤ km(d(x, y) + vm) ∀m ≥ 2

is true for km ≥ 0 and for any sequence {vm} in [0,∞) with vm → 0.

Recall that a function h : W → (−∞,∞] is convex, if for any geodesic [s, r] =
{cs,r(a) : 0 ≤ a ≤ 1} = {as ⊕ (1 − a)r : 0 ≤ a ≤ 1} joining s, r ∈ W, the function
h ◦ c is convex, i.e.,

h(cs,r(a)) = h(as⊕ (1− a)r) ≤ ah(s) + (1− a)h(r).

The Moreau-Yoshida resolvent of function h in the CAT(0) space is given by

Jπ(x) = argminr∈Y

[
h(r) +

1

2π
d2(r, s)

]
for any π > 0 and for all s ∈ Y.

Remark 2.11. (1) The resolvent Jπ of function h is nonexpansive for all π >
0 (see [23]).

(2) If h is convex, proper and lower semi-continuous function, then the set
of fixed point of the resolvent associated with h coincides with the set of
minimizers of h (see [7]).

Lemma 2.12. (see [23,30]) Suppose that (Y, d) is a CAT(0) space. Then for each
r, s ∈ Y and π > 0

1

2π
d2(Jπs, r)−

1

2π
d2(s, r) +

1

2π
d2(Jπs, s) ≤ h(r)− h(Jπs).

Lemma 2.13. ( [3]) Suppose that (Y, d) is a CAT(0) space. Then for each s ∈ Y
and π > µ > 0

Jπs = Jµ
(π − µ

π
Jπs⊕

µ

π
s
)

Lemma 2.14. ( [39]) Let {am}, {bm} and {cm} be sequences of nonnegative real
numbers such that

am+1 ≤ (1 + bm)am + cm ∀m ∈ N.

If
∑∞
m=1 bm <∞ and

∑∞
m=1 cm <∞, then limm→∞ am exists.



34 S. Dashputre, Padmavati, and K. Sakure

3. Main Results

Theorem 3.1. Let (Y, d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y . Let T : W → P (W) be multivalued mapping and PT be a
nonexpansive mapping. Let h : Y → (−∞,∞] be a proper convex and lower semi-
continuous function and A,B,C : W → W be three nearly Lipschitzian mappings
with {km}, {vm} being nonnegative real sequences such that

∑∞
m=1 km < ∞ and∑∞

m=1 νm <∞. Let E := G(A) ∩G(B) ∩G(C) ∩G(T ) ∩ argminr∈W h(r) 6= φ. Let
{sm} be defined by

pm = argminr∈Y {h(r) + 1
2πm

d2(r, xm)}
qm = (1− cm)pm ⊕ cmAmzm
rm = (1− bm)Bmym ⊕ bmqm
sm+1 = (1− am)rm + amC

mxm m ∈ N .

(4)

where zm ∈ PT (pm), ym ∈ PT (qm) and xm ∈ PT (rm) for each m ∈ N . Let
{am}, {bm} and {cm} be sequences in [0, 1] for all m ∈ N and {πm} be a sequence
with πm > 0 for all m ∈ N. Then limm→∞ d(sm, t) exists for all t ∈ E .

Proof. Since E 6= φ. So we can assume that t ∈ E which implies that t = At = Bt =
Ct and h(t) ≤ h(r) for any r ∈ W. Thus, we have

h(t) +
1

2πm
d2(t, t) ≤ h(r) +

1

2πm
d2(r, t)

for each r ∈ W, and we have t = Jπm
t for each m ∈ N. Since pm = Jπm

sm and
Jπm is nonexpansive, so we have

d(pm, t) = d(Jπmsm,Jπmt) ≤ d(sm, t) (5)

Now using (4), (5) and Lemma 2.3, we have

d(qm, t) = d((1− cm)pm ⊕ cmAmzm, t)
≤ (1− cm)d(pm, t) + cmd(Amzm, t)

≤ (1− cm)d(pm, t) + cm(km(d(zm, t) + vm))

= (1− cm)d(pm, t) + cmkmd(zm, t) + cmkmvm

≤ (1− cm) dist(pm, PT (t)) + cmkm dist(zm, PT (t)) + cmkmvm

≤ (1− cm)H(PT (pm), PT (t)) + cmkmH(PT (zm), PT (t)) + cmkmvm

≤ (1− cm)d(pm, t) + cmkmd(pm, t) + cmkmvm

= (1− cm(1− km))d(pm, t) + cmkmvm

≤ (1− cm(1− km))d(sm, t) + cmkmvm

d(qm, t) ≤ Cd(sm, t) + G (6)
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where C = 1− cm(1− km) and G = cmkmvm.
Now using (4), (6) and Lemma 2.3, we have

d(rm, t) = d((1− bm)Bmym ⊕ bmqm, t)
≤ (1− bm)d(Bmym, t) + bmd(qm, t)

≤ (1− bm)(km(d(ym, t) + vm)) + bmd(qm, t)

= (1− bm)kmd(ym, t) + (1− bm)kmvm + bmd(qm, t)

≤ (1− bm)km dist(ym, PT (t)) + (1− bm)kmvm + bm dist(qm, PT (t))

≤ (1− bm)kmH(PT (ym), PT (t)) + (1− bm)kmvm + bmH(T (qm), PT (t))

≤ (1− bm)kmd(qm, t) + (1− bm)kmvm + bmd(qm, t)

≤ (1− bm(1− km))d(qm, t) + (1− bm)kmvm

≤ (1− bm(1− km))
(
Cd(sm, t) + G

)
+ (1− bm)kmvm

d(rm, t) ≤ BCd(sm, t) + BG + F (7)

where B = 1− bm(1− km) and F = (1− bm)kmvm.
Now using (4), (7) and Lemma 2.3, we have

d(sm+1, t) = d((1− am)rm ⊕ amCmxm, t)
≤ (1− am)d(rm, t) + amd(Cmxm, t)

≤ (1− am)d(rm, t) + am(km(d(xm, t) + vm))

= (1− am)d(rm, t) + amkmd(xm, t) + amkmvm

≤ (1− am) dist(rm, PT (t)) + amkm dist(xm, PT (t)) + amkmvm

≤ (1− am)H(PT (rm), PT (t)) + amkmH(PT (xm), PT (t)) + amkmvm

≤ (1− am)d(rm, t) + amkmd(rm, t) + amkmvm

= (1− am + amkm)d(rm, t) + amkmvm

= (1− am(1− km))d(rm, t) + amkmvm

≤ (1− am(1− km))
(
BCd(sm, t) + BG + F

)
+ amkmvm

d(sm+1, t) ≤ ABCd(sm, t) +ABG +AF +D (8)

whereA = 1−am(1−km) and D = amkmvm. Since
∑∞
m=1 km <∞ and

∑∞
m=1 vm <

∞. Therefore
∑∞
m=1ABC <∞ and

∑∞
m=1ABG+AF+D <∞. Thus, from Lemma

2.14 and inequality (8), limm→∞ d(sm, t) exists and we may assume that

lim
m→∞

d(sm, t) = k ≥ 0. (9)

By (9), {sm} is bounded and therefore {pm}, {qm}, {rm}, {Amsm}, {Bmsm} and
{Cmsm} are bounded. �

Theorem 3.2. Let (Y, d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y . Let T : W → P (W) be multivalued mapping and PT be
a nonexpansive mapping. Let h : Y → (−∞,∞] be a proper convex and lower
semi-continuous function and A,B,C :W →W be three nearly Lipschitzian map-
pings with {km}, {vm} being nonnegative real sequences such that

∑∞
m=1 km < ∞,
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m=1 vm < ∞ and km ≤ 1 ∀m ∈ N . Let E := G(A) ∩ G(B) ∩ G(C) ∩ G(T ) ∩

argminr∈W h(r) 6= φ. Let {sm} be defined by (4). Then
(1) limm→∞ d(sm, pm) = 0;
(2) limm→∞ d(sm, Asm) = limm→∞ d(sm, Bsm) = limm→∞ d(sm, Csm) = 0.

Proof. (1) By Lemma 2.12, we get

1

2πm
{d2(pm, t)− d2(sm, t) + d2(sm, pm)} ≤ h(t)− h(pm).

Since h(t) ≤ h(pm) for each m ∈ N , we have

d2(sm, pm) ≤ d2(sm, t)− d2(pm, t). (10)

From (8) and (9), we have

lim inf
m→∞

d(sm+1, t) ≤ lim inf
m→∞

(1− am(1− km))d(rm, t) + lim inf
m→∞

amkmvm

k ≤ lim inf
m→∞

d(rm, t) (11)

From (7), we have

lim sup
m→∞

d(rm, t) ≤ lim sup
m→∞

(1− bm(1− km))
(
(1− cm(1− km))d(sm, t) + cmkmvm

)
+ lim sup

m→∞
(1− bm)kmvm

lim sup
m→∞

d(rm, t) ≤ k. (12)

From (11) and (12), we have

lim
m→∞

d(rm, t) = k. (13)

From (7) and (13), we have

lim inf
m→∞

d(rm, t) ≤ lim inf
m→∞

(1− bm(1− km))d(qm, t) + lim inf
m→∞

(1− bm)kmvm

k ≤ lim inf
m→∞

d(qm, t) (14)

From (6) and (9), we have

lim sup
m→∞

d(qm, t) ≤ lim sup
m→∞

(1− cm(1− km))d(sm, t) + lim sup
m→∞

cmkmvm

lim sup
m→∞

d(qm, t) ≤ k. (15)

From (14) and (15), we have

lim
m→∞

d(qm, t) = k. (16)

From (6) and (16), we have

lim inf
m→∞

d(qm, t) ≤ lim inf
m→∞

(1− cm(1− km))d(pm, t) + lim inf
m→∞

cmkmvm

k ≤ lim inf
m→∞

d(pm, t). (17)

From (6), we have

lim sup
m→∞

d(pm, t) ≤ lim sup
m→∞

d(sm, t) ≤ k. (18)
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From (17) and (18), we have

lim
m→∞

d(pm, t) = k. (19)

So from (10), we have

lim
m→∞

d(sm, pm) = 0. (20)

(2) Suppose that E is nonempty, and let t ∈ E . From (9), limm→∞ d(sm, t) exists
and {sm} is bounded. From (4) and Lemma 2.3, we have

d2(qm, t) = d2((1− cm)pm ⊕ cmAmzm, t)
≤ (1− cm)d2(pm, t) + cmd

2(Amzm, t)− cm(1− cm)d2(pm, A
mzm)

≤ (1− cm)d2(pm, t) + cm(kmd(zm, t) + vm)2 − cm(1− cm)d2(pm, A
mzm)

= cm(kmd(zm, t) + vm)2 + (1− cm)d2(pm, t)− cm(1− cm)d2(pm, A
mzm)

= cm(k2md
2(zm, t) + v2m + 2kmvmd(zm, t)) + (1− cm)d2(pm, t)

−cm(1− cm)d2(pm, A
mzm)

= cmk
2
md

2(zm, t) + (1− cm)d2(pm, t) + cm(v2m + 2kmvmd(zm, t))

−cm(1− cm)d2(pm, A
mzm)

= cmk
2
m dist(zm, PT (t))2 + (1− cm) dist(pm, PT (t))2

+cm(v2m + 2kmvm dist(zm, PT (t)))− cm(1− cm)d2(pm, A
mzm)

= cmk
2
mH(PT (pm), PT (t))2 + (1− cm)H(PT (pm), PT (t))2

+cm(v2m + 2kmvmH(PT (pm), PT (t)))− cm(1− cm)d2(pm, A
mzm)

= cmk
2
md

2(pm, t) + (1− cm)d2(pm, t) + cm(v2m + 2kmvm)d(pm, t)

−cm(1− cm)d2(pm, A
mzm)

= cmd
2(pm, t) + (1− cm)d2(pm, t) + cm(v2m + 2kmvm)d(pm, t)

−cm(1− cm)d2(pm, A
mzm)

= d2(pm, t) + cm(v2m + 2kmvm)d(pm, t)− cm(1− cm)d2(pm, A
mzm)

= d2(pm, t) + pvm − cm(1− cm)d2(pm, A
mzm)

where p = cm(vm + 2km)d(pm, t) > 0. Therefore,

cm(1− cm)d2(Amzm, pm) ≤ d2(sm, t)− d2(qm, t) + pvm.

Since limm→∞ vm = 0, we have cm(1− cm)d2(Amzm, pm) = 0.
From lim infm→∞ cm(1− cm) > 0, we have

lim
m→∞

d(Amzm, pm) = 0. (21)
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From (4) and Lemma 2.3, we have

d2(rm, t) = d2((1− bm)Bmym ⊕ bmqm, t)
≤ (1− bm)d2(Bmym, t) + bmd

2(qm, t)− bm(1− bm)d2(Bmym, qm)

≤ (1− bm)(kmd(ym, t) + vm)2 + bmd
(qm, t)− bm(1− bm)d2(Bmym, qm)

= (1− bm)(kmd(ym, t) + vm)2 + bmd
2(qm, t)− bm(1− bm)d2(Bmym, qm)

= (1− bm)(k2md
2(ym, t) + v2m + 2kmvmd(ym, t)) + bmd

2(qm, t)

−bm(1− bm)d2(Bmym, qm)

= (1− bm)k2md
2(ym, t) + bmd

2(qm, t) + (1− bm)(v2m + 2kmvmd(ym, t))

−bm(1− bm)d2(Bmym, qm)

= (1− bm)k2m dist(ym, PT (t))2 + bm dist(qm, PT (t))2

+(1− bm)(v2m + 2kmvm dist(ym, PT (t)))− bm(1− bm)d2(Bmym, qm)

= (1− bm)k2mH(PT (ym), PT (t))2 + bmH(PT (qm), PT (t))2

+(1− bm)(v2m + 2kmvmH(PT (qm), PT (t)))− bm(1− bm)d2(Bmym, qm)

= (1− bm)k2md
2(qm, t) + bmd

2(qm, t) + (1− bm)(v2m + 2kmvm)d(qm, t)

−bm(1− bm)d2(Bmym, qm)

= (1− bm)d2(qm, t) + bmd
2(qm, t) + (1− bm)(v2m + 2kmvm)d(qm, t)

−bm(1− bm)d2(Bmym, qm)

= d2(qm, t) + (1− bm)(v2m + 2kmvm)d(qm, t)

−bm(1− bm)d2(Bmym, qm)

= d2(qm, t) + qvm − bm(1− bm)d2(Bmym, qm)

where q = (1− bm)(vm + 2km)d(qm, t) > 0. Therefore

bm(1− bm)d2(Bmym, qm) ≤ d2(qm, t)− d2(rm, t) + qvm.

Since limm→∞ vm = 0, we have

bm(1− bm)d2(Bmym, qm) = 0.

From lim infm→∞ bm(1− bm) > 0, we have

lim
m→∞

d(Bmym, qm) = 0. (22)
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Similarly from (4) and Lemma 2.3, we have

d2(sm+1, t) = d2((1− am)rm ⊕ amCmxm, t)
≤ (1− am)d2(rm, t) + amd

2(Cmxm, t)− am(1− am)d2(rm, C
mxm)

≤ (1− am)d2(rm, t) + am(kmd(xm, t) + vm)2 − am(1− am)d2(rm, C
mxm)

= am(kmd(xm, t) + vm)2 + (1− am)d2(rm, t)− am(1− am)d2(rm, C
mxm)

= am(k2md
2(xm, t) + v2m + 2kmvmd(xm, t)) + (1− am)d2(rm, t)

−am(1− am)d2(rm, C
mxm)

= amk
2
md

2(xm, t) + (1− am)d2(rm, t) + am(v2m + 2kmvmd(xm, t))

−am(1− am)d2(rm, C
mxm)

= amk
2
m dist(xm, PT (t))2 + (1− am) dist(rm, PT (t))2 + am(v2m

+2kmvm dist(xm, PT (t)))− am(1− am)d2(rm, C
mxm)

= amk
2
mH(PT (rm), PT (t))2 + (1− am)H(PT (rm), PT (t))2 + am(v2m

+2kmvmH(PT (rm), PT (t)))− am(1− am)d2(rm, C
mxm)

= amk
2
md

2(rm, t) + (1− am)d2(rm, t) + am(v2m + 2kmvm)d(rm, t)

−am(1− am)d2(rm, C
mxm)

= amd
2(rm, t) + (1− am)d2(rm, t) + am(v2m + 2kmvm)d(rm, t)

−am(1− am)d2(rm, C
mxm)

= d2(rm, t) + am(v2m + 2kmvm)d(rm, t)

−am(1− am)d2(rm, C
mxm)

= d2(rm, t) + rvm − am(1− am)d2(rm, C
mxm)

where r = am(vm + 2km)d(rm, t) > 0. Therefore

am(1− am)d2(Cmxm, rm) ≤ d2(rm, t)− d2(sm+1, t) + rvm.

Since limm→∞ vm = 0, we have

am(1− am)d2(Cmxm, rm) = 0.

From lim infm→∞ am(1− am) > 0, we have

lim
m→∞

d(Cmxm, rm) = 0. (23)

From (20) and (21), we have

d(qm, sm) = d((1− cm)pm ⊕ cmAmzm, sm)

≤ (1− cm)d(pm, sm)⊕ cmd(Amzm, sm)

≤ (1− cm)d(pm, sm)⊕ cm(d(Amzm, pm) + d(pm, sm))

= (1− cm)d(pm, sm)⊕ cmd(Amzm, pm) + cmd(pm, sm))

= d(pm, sm)⊕ cmd(Amzm, pm)

→ 0 as m→∞. (24)
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From (22) and (24), we have

d(rm, sm) = d((1− bm)qm ⊕ bmBmym, sm)

≤ (1− bm)d(qm, sm)⊕ bmd(Bmym, sm)

≤ (1− bm)d(qm, sm)⊕ bm(d(Bmym, qm) + d(qm, sm))

= (1− bm)d(qm, sm)⊕ bmd(Bmym, qm) + bmd(qm, sm))

= d(qm, sm)⊕ bmd(Bmym, qm)

→ 0 as m→∞. (25)

From (23) and (25), we have

d(sm+1, sm) = d((1− am)rm ⊕ amCmxm, sm)

≤ (1− am)d(rm, sm)⊕ amd(Cmxm, sm)

≤ (1− am)d(rm, sm)⊕ am(d(Cmxm, rm) + d(rm, sm))

= (1− am)d(rm, sm)⊕ amd(Cmxm, rm) + amd(rm, sm))

= d(rm, sm)⊕ amd(Cmxm, rm)

→ 0 as m→∞. (26)

By the triangular inequality, (20) and (21),

d(Amsm, sm) ≤ d(Amsm, A
mzm) + d(Amzm, pm) + d(pm, sm)

≤ km(d(sm, zm) + vm) + d(Amzm, pm) + d(pm, sm)

≤ km(H(PT sm, PT zm) + vm) + d(Amzm, pm) + d(pm, sm)

≤ km(d(sm, pm) + vm) + d(Amzm, pm) + d(pm, sm)

→ 0 as m→∞. (27)

By the triangular inequality, (22) and (24),

d(Bmsm, sm) ≤ d(Bmsm, B
mym) + d(Bmym, qm) + d(qm, sm)

≤ km(d(sm, ym) + vm) + d(Bmym, qm) + d(qm, sm)

≤ km(H(PT sm, PT ym) + vm) + d(Bmym, qm) + d(qm, sm)

≤ km(d(sm, qm) + vm) + d(Bmym, qm) + d(qm, sm)

→ 0 as m→∞. (28)

By the triangular inequality, (23) and (25),

d(Cmsm, sm) ≤ d(Cmsm, C
mxm) + d(Cmxm, rm) + d(rm, sm)

≤ km(d(sm, xm) + vm) + d(Cmym, rm) + d(rm, sm)

≤ km(H(PT sm, PT xm) + vm) + d(Cmxm, rm) + d(rm, sm)

≤ km(d(sm, rm) + vm) + d(Cmxm, rm) + d(rm, sm)

→ 0 as m→∞. (29)
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From (26) and (27), we have

d(sm, Asm) ≤ d(sm, sm+1) + d(sm+1, A
m+1sm+1) + d(Am+1sm+1, A

m+1sm)

+d(Am+1sm, Asm)

≤ d(sm, sm+1) + d(sm+1, A
m+1sm+1) + km(d(sm+1, sm) + vm)

+km(d(Amsm, sm) + vm)

→ 0 as m→∞. (30)

From (26) and (28), we have

d(sm, Bsm) ≤ d(sm, sm+1) + d(sm+1, B
m+1sm+1) + d(Bm+1sm+1, B

m+1sm)

+d(Bm+1sm, Bsm)

≤ d(sm, sm+1) + d(sm+1, B
m+1sm+1) + km(d(sm+1, sm) + vm)

+km(d(Bmsm, sm) + vm)

→ 0 as m→∞. (31)

From (26) and (29), we have

d(sm, Csm) ≤ d(sm, sm+1) + d(sm+1, C
m+1sm+1) + d(Cm+1sm+1, C

m+1sm)

+d(Cm+1sm, Csm)

≤ d(sm, sm+1) + d(sm+1, C
m+1sm+1) + km(d(sm+1, sm) + vm)

+km(d(Bmsm, sm) + vm)

→ 0 as m→∞. (32)

�

Theorem 3.3. Let (Y, d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y . Let T : W → P (W) be multivalued mapping and PT be a
nonexpansive mapping. Let h : Y → (−∞,∞] be a proper convex and lower semi-
continuous function, A,B,C : W → W be three nearly Lipschitzian mappings.
Then {sm} defined in (4) is ∆−convergent to a common fixed point of E .

Proof. From Lemma 2.13 and (20), we have

d(J sm, sm) ≤ d(J sm, pm) + d(pm, sm)

= d(J sm,Jπm
pm) + d(pm, sm)

= d
(
J sm,Jπ

(πm − π
πm

Jπm
sm ⊕

π

πm

))
+ d(pm, sm)

≤ d
(
sm,

(
1− π

πm

)
Jπmsm ⊕

π

πm
sm
)

+ d(pm, sm)

≤
(
1− π

πm

)
d(sm,Jπm

sm) +
π

πm
d(sm, sm) + d(pm, sm)

≤
(
1− π

πm

)
d(sm, pm) + d(pm, sm)

→ 0 as m→∞. (33)
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By Theorem 3.1, we have limm→∞ d(sm, t) exists for all t ∈ E and

lim
m→∞

d(sm, Asm) = lim
m→∞

d(sm, Bsm) = lim
m→∞

d(sm, Csm) = 0.

Now we have to show that

W4(sm) = ∪{um}⊂{sm}A({um}) ⊂ E .
Let u ∈ W4(sm). Then there exists a subsequence {um} of {sm} such thatA(um}) =
{u}. From Definition 2.2, there exists a subsequence {vm} of {um} such that
∆ − limm→∞ vm = v for some v ∈ W. By Lemma 2.5, v ∈ E . By Lemma 2.4,
u = v. This shows that W4({sm}) ⊂ E .
Now we have to prove that the sequence {sm} ∆−converges to a point in E , which
will prove thatW4({sm}) consists of exactly one point. Let {um} be a subsequence
of {sm} with A(um}) = {u}, and let A(sm}) = {s}. Since u ∈ W4({sm}) ⊂ E
and {d(sm, u)} converges by Lemma 2.4, we have s = u. Therefore W4({sm}) =
{s}. �

Corollary 3.4. Let (Y, d) be a complete CAT(0) space and W be a nonempty
closed convex subset of Y . Let T :W → P (W) be multivalued mapping and PW be
a nonexpansive mapping. Let h : Y → (−∞,∞] be a proper convex and lower semi-
continuous function and A,B,C : W → W be three nearly Lipschitzian mappings
and zm ∈ PT (pm), ym ∈ PT (qm), xm ∈ PT (rm), {am}, {bm}, {cm} and πm satisfy
all the conditions of Theorem 3.1. Let {sm} be sequence defined by (4). Then the
sequence {sm} converges weakly to a common point in E .

Now we construct and prove strong convergence theorems.
Let W be a nonempty closed convex subset of CAT(0) space (Y, d). A family
{A,B,C, T } of mappings is said to satisfy Condition (E), if there exists a nonde-
creasing function h : [0,∞)→ [0,∞) with h(0) = 0 and h(w) > 0 for all w ∈ (0,∞)
such that

d(s,As) ≥ h(d(s,G)),

or

d(s,Bs) ≥ h(d(s,G)),

or

d(s, Cs) ≥ h(d(s,G)),

or

d(s, Ts) ≥ h(d(s,G)),

for all s ∈ Y, where G = G(A) ∩G(B) ∩G(C) ∩G(T ).

Theorem 3.5. Let (Y, d) be a complete CAT(0) space and W be a nonempty closed
convex subset of Y . Let T : W → P (W) be multivalued mapping and PT be a
nonexpansive mapping. Let h : Y → (−∞,∞] be a proper convex and lower semi-
continuous function and A,B,C : W → W be three nearly Lipschitzian mappings
and zm ∈ PT (pm), ym ∈ PT (qm), xm ∈ PT (rm), {am}, {bm}, {cm} and {πm}
satisfy all the conditions of Theorem 3.1 and {A,B,C,Jπ} satisfy the Condition
(E). Then the sequence {sm} defined in (4) strongly converges to an element of E .
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Proof. From Theorem 3.1, we have limm→∞ d(sm, t) exists for all t ∈ E . Also it
follows that limm→∞ d(sm, E) exists. On the otherhand, by Condition (E), we have

lim
m→∞

d(d(sm, E)) ≥ lim
m→∞

d(sm, Asm) = 0.

or

lim
m→∞

d(d(sm, E)) ≥ lim
m→∞

d(sm, Bsm) = 0.

or

lim
m→∞

d(d(sm, E)) ≥ lim
m→∞

d(sm, Csm) = 0.

or

lim
m→∞

d(d(sm, E)) ≥ lim
m→∞

d(sm,Jπsm) = 0.

Thus, we have limm→∞ d(sm, E) = 0. Using the property of h, we have

lim
m→∞

d(sm, E) = 0.

Therefore, {sm} is a Cauchy sequence in Y , and so {sm} converges to a point t ∈ Y
and hence d(t, E) = 0. Since E is closed, so we have t ∈ E . �

Remark 3.6. (1) Our results extends the results of Hussain et al. [22] in the
framework of CAT(0) spaces. They established convergence theorems for
different classes of generalized nonexpansive mappings including a total
asymptotically nonexpansive mapping, a multivalued mapping, and a min-
imizer of a convex function for solving the convex minimization problem
and the common fixed point problem.

(2) Our results is generalization of the results of Pakkaranang et al. [33] in
the framework of CAT(0) spaces. They established convergence theorems
for three asymptotically quasinonexpansive mappings involving the convex
and lower semi-continuous function for solving the convex minimization
problem and the common fixed point problem.

4. Numerical Examples

In this section, we discuss a numerical result to illustrate the convergence of
the iterative algorithm (4) to support our example.

Example 4.1. Consider Y = R with its usual metric, then Y is complete CAT(0)
space (see [35, Example 3]). Assume that C = [0, 5000]. Here C is closed and
bounded subset of Y . Let T : C → P (C) be a mapping defined by

T (s) =
{3s+ 4

5

}
∀s ∈ C. (34)

It is clear that the mapping T is nonexpansive.
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Table 1. Numerical values of sm, ‖sm − sm−1‖2 and h(sm)

No. of iterations sm ‖sm − sm−1‖2 h(sm)
m=1 50 - 1269.2
m=2 2.59511 47.4049 3.60534
m=3 1.99745 0.59766 1.99389
m=4 1.99841 0.00095 1.99618
m=5 1.99903 0.00062 1.99767
m=6 1.99931 0.00028 1.99835
m=7 1.99947 0.00015 1.99872
m=8 1.99956 0.00009 1.99895
m=9 1.99962 0.00006 1.99910
m=10 1.99967 0.00004 1.99921
m=11 1.99970 0.00003 1.99929
m=12 1.99973 0.00003 1.99935
m=13 1.99975 0.00002 1.99940
m=14 1.99977 0.00002 1.99944
m=15 1.99978 0.00001 1.99947
m=16 1.99979 0.00001 1.99950
m=17 1.99980 0.00000 1.99952
m=18 1.99981 0.00000 1.99954
m=19 1.99981 0.00000 1.99956
m=20 1.99981 0.00000 1.99956

Now we define a mapping h : Y → (−∞,∞] such that

h(s) = ‖s‖1 +
1

2
‖s‖22 −

3

5
s− 4

5

It is easy to check that h is a proper convex and lower semi-continuous func-
tion and consider the nearly Lipschitzian mappings A,B,C from definitions (2.8),
(2.9) and (2.10), respectively and T is nonexpansive mapping with G(A)∩G(B)∩
G(C) ∩ G(T ) = {2}. Suppose that am = 15m−3

16m , bm = m+5
22m and cm = 33m−7

34m and
s1 = 50 is the initial value. We obtain the numerical results with the errors values
in Table 1. From Table 1, Figure 1 and Figure 2, it is clear that the sequence {sm}
converges to 1.99999 ≡ 2 which is common fixed point of solution of a minimizer of
a function h, multivalued mapping T and three nearly Lipschtzian mappings A,B
and C.

5. Conclusion

In this paper, we proved the ∆−convergence, strong and weak convergence re-
sults for the modified proximal point algorithm for three nearly Lipschitzian asymp-
totically nonexpansive mappings and multivalued mapping in CAT(0) space. Also,
we illustrated the efficiency of modified proximal point algorithm by numerical
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Figure 1. Value of sm

]

Figure 2. Value of error
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example in CAT(0) space for supporting our results. The results in this paper
generalized the results of Hussain et al. [22] and Pakkaranang et al. [33].
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