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Abstract. We construct a developable surface normal to a surface along a curve on

the surface. We choose the curve as the normal direction curve on which the new

surface is formed in Euclidean space. We obtain some results about the uniqueness

and the singularities of such developable surfaces. We also give two invariants of

curves on a surface which characterize singularities.
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1. INTRODUCTION

The motion of a straight line continuously along a curve generates a surface
called ruled surface. In other words, ruled surfaces are one-parameter family of
lines. It is a very classical subject which has been studied in differential geome-
try for two hundred years. Applications of ruled surfaces have been extensively
performed to computer-aided geometric design (CAGD), surface design, manufac-
turing technology, simulation and rigid bodies. A regular ruled surface in Euclidean
3-space R3 whose Gaussian curvature vanishes is called a developable surface. De-
velopable surfaces as a kind of ruled surfaces are classified into cylinders, cones or
tangent surfaces of space curves [1], [3], [10], [11], [12].

Izumiya and Takeuchi, in their survey of ruled surfaces [4], presented original
results about curves on ruled surfaces in Euclidean space. They studied curves on
ruled surfaces by choosing curves as cylindirical helices and Bertrand curves [5]. In
their another paper [6], they defined the notion of slant helices and conical geodesic
curves which are generalizations of the notion of helices. They also constructed the
tangential Darboux developable of a space curve and examined singularities of this
surface. They gave interesting results about a geometric invariant of space curve
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which is closely regarded to singularities of the tangential Darboux developable of
the original curve [6].

The motivation of this study is based on the works of Izumiya and Otani
[7], and Hananoi and Izumiya [8]. In the first paper [7], the authors constructed
osculating developable surface along the curve on the surface by taking a devel-
opable surface tangent to a surface along a curve on the surface into consideration.
Then they gave some results such as the uniqueness and the singularities of such a
surface. In the second work [8], Hananoi and Izumiya studied a developable surface
which remains normal to a surface along a curve on ruled surface. They had results
such as the uniqueness and the singularities of such developable surfaces. Recently,
Markina and Raffaelli examined the same topic in Rm+1. Taking a smooth curve
γ in an m−dimensional surface M in Rm+1, they gave some results about the ex-
istence and uniqueness of a flat surface H having the same field of normal vectors
as M along γ [9].

The organization of this work is as follows: in Sec. 2, we gave the basic notions
and definitions of curve on ruled surfaces and developable surfaces in Euclidean
space. In Sec. 3, new developable surfaces which remain normal to the base surface
are constructed along a normal direction curve and some results such as invariants
of Mn characterizing contour generators of M , and existence and uniqueness of the
surface have been presented for these surfaces. Finally, illustrative examples have
been given for the base surface and its normal developable surface.

2. PRELIMINARIES

In this section we list some notions, formulas and conclusions for space curves,
and ruled surfaces in Euclidean 3-space R3 which can be found in the textbooks on
differential geometry (See for instance Refs. [4], [6], [11]).

Let M be a regular surface in R3 and α : I ⊆ R→M be a unit speed curve.
At each point on α = α(s), consider the following three vectors: the unit normal
vector e3(s) to the surface, the unit tangent vector e1 = e1(s) to the curve and
the tangent normal vector e2=e3×e1. The vector e2 is tangent to the surface M
, but normal to the curve α = α(s). Then we have an orthonormal frame {e1(s),
e2(s), e3(s)} along α,which is called the Darboux frame along α = α(s). Darboux
equations for this frame are given by e′1

e′2
e
′

3

 =

 0 κg κn
−κg 0 τg
−κn −τg 0

 e1
e2
e3

 , (1)

Here,
κg(s) := 〈e′1, e2〉 = det(α′, α′′,e3)
κn(s) := 〈e′1, e3〉= 〈α′′,e3〉 ,
τg(s) := 〈e′2, e3〉= det(α′,e3,e

′
3).

 (2)

In terms of these quantities, the geodesics, asymptotic lines, and line of curvatures
on a smooth surface may be characterized, as loci along which κg(s) = 0, κn = 0,
and τg(s) = 0, respectively.
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On the other hand, it is known that

κ(s) =
√
κ2g + κ2n, and τg(s) =

κnκ
′

g − κgκ
′

n

κ2n + κ2g
+ τ(s), (3)

where κ(s), and τ(s) are the curvature and the torsion of α = α(s) as a space curve,
respectively [10]. From now on, we shall often not write the parameter s explicitly
in our formulae.

2.1. Ruled and developable surfaces. A ruled surface in Euclidean 3-space
R3 is a differentiable one-parameter set of straight lines. Such a surface has a
parameterization as

P(s, v) = α(s) + ve(s), v ∈ R, (4)

where α(s) is its base curve and e(s) is the unit vector giving the direction of the
straight lines of the surface. The unit normal vector of the ruled surface P(s, v) at
each point is defined by

n(s, v) =
Ps ×Pv
‖Ps ×Pv‖

=
α′ × e + ve′ × e

‖α′ × e + ve′ × e‖
. (5)

The base curve is not unique, since any curve of the form:

C(s) = α(s)− η(s)e(s), (6)

may be used as its base curve, η(s) is a smooth function. If there exists a common
perpendicular to two neighbouring rulings on P(s, v), then the foot of the common
perpendicular on the main ruling is called a central point. The locus of the central
points is called the striction curve. In Eq. (6) if

η(s) =
〈α′(s), e′〉
‖e′‖2

. (7)

then the curve C(s) is called the striction curve on the ruled surface and it is
unique. In the case of η = 0, the base curve is the striction curve. The distribution
parameter of P(s, v) is defined by

λ(s) =
det(α′, e, e′)

‖e′‖2
. (8)

The distribution parameter λ is a well-known real integral invariant of a ruled
surface and allows further classification of the ruled surface.

Developable surfaces can be briefly introduced as special cases of ruled sur-
faces. If the ruled surface P(s, v) is a developable one, then we have

λ(s) = 0⇔ det(α′, e, e′) = 0. (9)

Thus a volume formed by α′, e and e′ vanishes, i.e, they are linearly dependent.
This condition (9) is satisfied provided that there are three non-identically vanishing
functions η(s), β(s) and γ(s) satisfying

µ(s)α′ + ξ(s)e + γ(s)e′ = 0. (10)
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We must consider the following cases:
Case 1: µ = 0

Since 〈e, e′〉 = 0, it follows immediately that Eq. (7) is only satisfied when e
is a constant vector, i.e., P(s, v) is a part of a cylinder.
Case 2: µ 6= 0 from Eq. (7) it follows:

α′ = ζ(s)e + υ(s)e′, (11)

where

ζ(s) = − ξ
µ
, υ(s) = −γ

µ
.

Differentiating Eq. (6) and using Eq. (8), we get

C′(s) = (ζ(s)− η′(s)) e(s) + (υ(s)− η(s)) e′. (12)

The condition for C to be striction curve is equivalent to that the vectors C′ and e′

are perpendicular to each other. Therefore, we conclude that the ruling is parallel
to the first derivative of the striction curve, which is also the tangent of the striction
curve, i.e.

C′ = (ζ(s)− η′(s)) e(s). (13)

We must hence consider the following sub-case: ζ(s) = η′(s). In this case, Eq. (13)
yields C = C0 is a constant vector. So, P(s, v) is a part of a cone as

P(s, v) = C0 + (η(s) + v)e(s), v ∈ R. (14)

We now define the notion of contour generators. Let M be an orientable
surface and n a unit normal vector field on M . For a unit vector x in the unit
sphere S2 =

{
x ∈R3 | ‖x‖ = 1

}
, the normal contour generator of the orthogonal

projection with the direction x is defined to be

{p ∈M | 〈n,x〉 = 0}. (15)

Moreover, for a fixed point c ∈ R3, the normal contour generators of the central
projection with the center c are defined to be

{p ∈M | 〈n,p− c〉 = 0}. (16)

For a regular surface, the notion of contour generators plays an important role in
the theory of vision [2].

Let M ⊂ R3 be a surface. It has been defined by Hananoi and Izumiya [8]
that a developable surface Mn is a normal developable surface of M if Mn∩M 6= ∅
and the tangent planes TpMn and TpM are orthogonal at any point p ∈ Mn ∩M.
If Mn is a cylinder, Mn becomes a normal cylinder of M. Also Mn is normal cone
of M if Mn is cone. For a normal developable surface Mn of M, the intersection
Mn ∩M is a regular curve.
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3. MAIN RESULTS

In this section, we introduce a normal developable surface along the e3(s)-
direction curve

β(s) =
∫ s
0
e3(s)ds.

Under the assumption (τg(s),κg(s)) 6= (0, 0), one define the following ruled surface

Mn : P̃(s, v) = β(s) + vẽ(s), (17)

where v ∈ R, and

ẽ(s) =
τge1 + κge3√

τ2g + κ2g

.

Firstly, differentiating ẽ, we find

ẽ′ =

(
κn +

τgκ
′

g − τ
′

gκg

τ2g + κ2g

)−κge1 + τge3√
τ2g + κ2g

 , (18)

and thus λ(s) = 0. This means that Mn is a developable surface. Moreover, we
introduce two invariants δ(s), and σ(s) of Mn as follows:

δ(s)=κn +
τgκ

′

g − τ
′

gκg

τ2g + κ2g
, and σ(s)=

κg√
τ2g + κ2g

-

 τg

δ(s)
√
τ2g + κ2g

′ , (19)

where δ(s) 6= 0. We can also calculate that

P̃s × P̃v =

vδ +
τg√

τ2g + κ2g

 e2. (20)

Hence, the normal vector of Mn is orthogonal to the normal vector of M . This is
the reason why we call Mn the normal developable surface of M along β(s).

On the other hand, the invariants δ(s), and σ(s) of Mn characterize contour
generators of M as follows:

Theorem 3.1. Let Mn be the normal developable surface of M along β(s) ex-
pressed by Eq. (17). Then we have the following:
(A) The following are equivalent:(1) Mn is a cylinder,(2) δ(s) = 0,(3) β = β(s) is
a contour generator with respect to an orthogonal projection.
(B) If δ(s) 6= 0, then the following are equivalent:(1) Mn is a cone,(2) σ(s) = 0,(3)
β = β(s) is a contour generator with respect to a central projection.

Proof. (A) From Eq. (18), it is obvious that Mn is a cylinder if and only if
ẽ(s) is constant, i.e. δ(s) = 0. Therefore, the condition (1) is equivalent to the
condition (2). Suppose that the condition (3) holds. Then there exists a fixed
vector x ∈S2 such that 〈e2,x〉 = 0. So there exist a, b ∈ R such that x =ae1 + be3.
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Since 〈e′2,x〉 = 0, we have aκg + bκn = 0, so that we have x =ẽ(s). Namely, the
condition (1) holds. Suppose that ẽ(s) is constant. Then we choose x =ẽ(s) ∈ S2.
By the definition of ẽ(s), we have < x, e2 >= 0. Thus the condition (1) implies the
condition (3).

(B) The condition (1) means that the singular value set of Mn is a constant
vector. Thus, in view of Eqs. (6), (7), and from Eq. (19), we have

C′(s) =

 κg√
τ2g + κ2g

−

 1

δ(s)

τg√
τ2g + κ2g

′ ẽ(s) = σ(s)ẽ(s).

Then Mn is a cone if and only if σ(s) = 0. It follows that (1) and (2) are equivalent.
By the definition of the the central projection, it can be said that there exists a
fixed point c ∈ R3 such that 〈e2, β−c〉 = 0. If (1) holds, then C(s) is constant. For
the constant point c = C(s), we have

〈e2, β−c〉 = 〈e2, β−C〉 =

〈
e2,

< β′, ẽ′ >

‖ẽ′‖2
e

〉
= 〈e2, ẽ〉 = 0.

This means that (3) holds. For the converse, by (3), there exists a fixed point
c ∈ R3 such that 〈e2, β−c〉 = 0. Taking the derivative of the both side, we have

0 = 〈e2, β−c〉′ = 〈−κge1 + τge3, β−c〉 ,

so we may write β−c =f(s)ẽ(s),where f(s) is a differentiable function. Taking the
derivative again, we have:

0 = 〈e2, β−c〉′′ = 〈−κge1 + τge3, e3〉+
〈
(−κge1 + τge3)

′
, β−c

〉
,

or equivaently,

0 = 〈e2, β−c〉′′ = τg − fδ
√
τ2g + κ2g.

It follows that

c =β(s)− f(s)ẽ(s) = β − 〈β
′, ẽ′〉
‖ẽ′‖2

ẽ(s) = C(s).

Therefore, C(s) is constant, so that (1) holds �.
�

Theorem 3.2. (Existence and uniqueness). Let M ⊂ R3 be a regular surface and
β:I →M ⊂ R3 be a unit-speed curve given by β=

∫
e3(s)ds with κ2g + τ2g 6= 0. Then

there exists a unique developable surface which is normal to the surface M along
the curve β.

Proof. For the existence, we have the normal developable surface along β = β(s)
represented by Eq. (17). On the other hand, since Mn is a ruled surface, we assume
that

Mn : P̃(s, v) = β(s) + vζ(s), (21)
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where v ∈ R,
ζ(s) = ζ1(s)e1+ζ2(s)e2+ζ3(s)e3, ζ

′(s) 6= 0.

It can be immediately seen from Eqs. (1) and (21) that Mn is developable if and
only if

det(β′, ζ, ζ ′) = 0⇔ -ζ2ζ
′
1 + ζ1ζ

′
2-ζ3 (ζ1τg + ζ2κn) + κg

(
ζ22 + ζ21

)
=0. (22)

On the other hand, since Mn is a developable surface which is normal developable
surface along β = β(s), we have(

P̃s × P̃v

)
(s, v) = ψ (s, v) e2. (23)

Also, the normal vector P̃s × P̃v at the point (s, 0) is(
P̃s × P̃v

)
(s, 0) = ζ1e2 − ζ2e1.

By means of Eqs. (23) and (24) we find:

ζ2 = 0, and ζ1 = ψ (s, 0) , (24)

which follows from Eq. (22) that

ζ1 (ζ1κg − ζ3τg) = 0. (25)

If (s, 0) is a regular point (i.e., ψ (s, 0) 6= 0), then ζ1(s) 6= 0. Thus, we have

ζ3 =
κg
τg
ζ1, with τg 6= 0. (26)

Therefore, we obtain

ζ(s) = ζ1e1+
κg
τg
ζ1e3 =

ζ1
cosϕ

ẽ(s), (27)

where ϕ 6= π
2 . It follows that ζ(s) is equal to the direction of ẽ(s). If κg 6= 0 (i.e.,

ϕ 6= 0), we have the same result as the above case. On the other hand, suppose
that Mn has a singular point at (s0, 0). Then ψ (s0, 0) = ζ2(s0) = ζ1(s0) = 0,
and we have ζ(s0) = ζ3(s0)e3(s0). If the singular point β(s0) is in the closure of
the set of points where the normal developable surface along β(s) is regular, then
there exists a point β(s) in any neighborhood of β(s0) such that the uniqueness
of the normal developable surface holds at β(s). Passing to the limit s → s0,
uniqueness of the normal developable surface also holds at s0. Suppose that there
exists an open interval J ⊆ I such that Mn is singular at β(s) for any s ∈ J . Then

P̃(s, v) = β(s) + vζ3(s)e3(s) for any s ∈ J . This means that ζ2(s) = ζ1(s) = 0 for
s ∈ J . It follows that (

P̃s × P̃v

)
(s, v) = vζ23 (κne2 − vτge1) . (28)

Thus the above vector is directed to e2, i.e. P̃s × P̃v ‖ e2(s) if and only if τg = 0
and κn 6= 0 for any s ∈ J . In this case, e(s) = ±e1. This means that uniqueness
holds �. �

As a result the following corollaries can be given:
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Corollary 3.3. The normal developable surface represented by Eq. (17) is a non-
cylindrical ruled surface if and only if δ(s) 6= 0.

Proof. It is a straighforward result from the definition of non-cylindirical ruled
surface. �

Corollary 3.4. The normal developable surface Mn represented by Eq. (17) is a
tangential developable if and only if δ(s) 6= 0, and σ(s) 6= 0.

Proof. According to the proof of Theorem 3.1, when δ(s) 6= 0, and σ(s) 6= 0, we
have ẽ′ 6= 0, and C′ 6= 0. Since det(β′, ẽ, ẽ′) = 0, < C′, ẽ′>=0 and < ẽ, ẽ′ >= 0,
we can get C′‖ẽ. This means the surface Mn is a tangent surface �. �

3.1. Special curves on a surface. In this subsection we consider special curves
in the following:
(1) If τg = 0, then α is a line of curvature, and

Mn : P̃(s, v) = β(s) + ve3(s), v ∈ R (29)

which is known as the tangent surface of β(s). We can give the following corollary
for the surface given by (29).

Corollary 3.5. Let Mn be the normal developable surface expressed by Eq. (29)
with τg = 0. Then we have the following:
(1) Mn is non-singular at points β(s0) if and only if v0 6= 0.

(2) Mn is locally diffeomorphic to Cuspidal edge at points P̃(s0, v0) if and only if
v0 = −cκ−1n (s0) 6= 0, c 6= 0, and κ′n(s0) 6= 0.

(3) Mn is locally diffeomorphic to Swallowtail SW at points P̃(s0, v0) if and only if

v0 = −cκ−1n (s0) 6= 0, c 6= 0, κ′n(s0) = 0, and
(
κ−1n

)′′
(s0) 6= 0.

Proof. Singularities of the normal developable surface expressed by Eq. (29) are
determined

P̃s × P̃v = vκne2. (30)

Therefore, P̃(s0, v0) is non-singular if and only if P̃s × P̃v 6= 0. This condition is
equivalent to v0 = −cκ−1n (s0), c 6= 0. This completes the proof of assertion (1).
From the Theorem 3.3 of the paper [6], we know that if there exists a parameter
s0 such that

v0 = −cκ−1n (s0), c 6= 0, and v
′

0 =
cκ′n(s0)

κ2n(s0)
6= 0 (i.e. κ′n 6= 0) ,

then Mn is locally diffeomorphic to Cuspidal edge at P̃(s0, v0). This completes the
proof of assertion (2). Again from Theorem 3.3 of [6], we know that if there exists
a parameter s0 such that

v0 = −cκ−1n (s0), c 6= 0, v
′

0 =
cκ

′

n(s0)

κ2n(s0)
= 0, and

(
κ−1n

)′′
(s0) 6= 0,

then Mn is locally diffeomorphic to Swallowtail SW at points P̃(s0, v0). This com-
pletes the proof of assertion (3) �. �
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(2). If κg = 0, then α is a geodesic curve, and

Mn : P̃(s, v) = β(s) + ve1(s), v ∈ R. (31)

We can give the following corollary for the surface given by (31).

Corollary 3.6. Let Mn be the normal developable surface expressed by Eq. (31)
with κg = 0. Then we have the following:
(1) Mn is non-singular at points β(s0) if and only if v0 6= 0.

(2) Mn is locally diffeomorphic to Cuspidal edge at points P̃(s0, v0) if and only if

v0 = −κ−1n (s0) 6= 0, and κ
′

n(s0) 6= 0.

(3) Mn is locally diffeomorphic to Swallowtail SW at points P̃(s0, v0) if and only if

v0 = −κ−1n (s0) 6= 0, κ
′

n(s0) = 0, and
(
κ−1n

)′′
(s0) 6= 0.

Proof. Singularities of the normal developable surface expressed by Eq. (31) are
determined

P̃s × P̃v = (vκn + 1) e2. (32)

Therefore, P̃(s0, v0) is non-singular if and only if P̃s × P̃v 6= 0. This condition is
equivalent to v0 = −κ−1n (s0). This completes the proof of assertion (1). From the
Theorem 3.3 of the study [6], we know that if there exists a parameter s0 such that

v0 = −κ−1n (s0), and v
′

0 =
κ′n(s0)

κ2n(s0)
6= 0 (i.e. κ′n 6= 0) ,

then Mn is locally diffeomorphic to Cuspidal edge at P̃(s0, v0). This completes the
proof of assertion (2). Again from Theorem 3.3 of [6], we know that if there exists
a parameter s0 such that

v0 = −κ−1n (s0), v
′

0 =
κ

′

n(s0)

κ2n(s0)
= 0, and

(
κ−1n

)′′
(s0) 6= 0,

then Mn is locally diffeomorphic to Swallowtail SW at points P̃(s0, v0). This com-
pletes the proof of assertion (3) �. �

3.2. Examples. We close this section with some examples:

Example 3.7. Let the base surface M be given as the following parameterization:

P(s, v) = (
1√
2

cos s,
1√
2

sin s,
s√
2
− 2v). (33)
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Fig. 1a. The base surface and Fig. 1b. The normal developable surface
its normal developable surface

The Darboux vector fields which belong to this surface are found as:

e1 = (− 1√
2

sin s,
1√
2

cos s,
1√
2

),

e2 = (− 1√
2

sin s,
1√
2

cos s,− 1√
2

),

e3 = (− cos s,− sin s, 0).

The directrix curve β of the normal developable surface is in the following form:

β =
∫ s
0
e3ds = (− sin s, cos s, 0).

The geodesic curvature and geodesic torsion of the base curve are, respectively,
computed as:

κg = 0, and τg =
1√
2
.

Then the ruling line ẽ of the normal developable surface is obtained

ẽ = (−1

2
sin s,

1

2
cos s,

1

2
).

As a result, the normal developable surface Mn is given with the below parameteri-
zation:

P̃(s, v) = (− sin s− v

2
sin s, cos s+

v

2
cos s,

v

2
). (34)

The base surface given by (33) and the normal developable surface given by (34)
have been together plotted in Fig. 1a. The normal developable surface given by
(34) has been alone illustrated in Fig 1b. The normal developable surface has been
illustrated by reflecting surface in Fig. 2.
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Fig. 2. The normal developable surface

Example 3.8. Let the base surface M be given as the following parameterization:

P(s, v) = (cos s− 1√
2
v cos s, sin s− 1√

2
v sin s,

v√
2

). (35)

Fig. 3a. The base surface and Fig. 3b. The normal developable surface
its normal developable surface

The Darboux vector fields which belong to this surface are found as:

e1 = (− sin s, cos s, 0),

e2 = (− 1√
2

cos s,− 1√
2

sin s,
1√
2

),

e3 = (
1√
2

cos s,
1√
2

sin s,
1√
2

).
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The directrix curve β of the normal developable surface is in the following form:

β =
∫ s
0
e3ds

= (
1√
2

sin s,− 1√
2

cos s,
s√
2

).

The geodesic curvature and geodesic torsion of the base curve are, respectively,
computed as:

κg =
1√
2

, and τg = 0.

Then the ruling line ẽ of the normal developable surface is obtained

ẽ = (
1√
2

cos s,
1√
2

sin s,
1√
2

).

As a result, the normal developable surface Mn is given with the below parameteri-
zation:

P̃(s, v) = (
1√
2

sin s+
1√
2
v cos s,− 1√

2
cos s+

1√
2
v sin s,

s√
2

+
v√
2

). (36)

The base surface given by (35) and the normal developable surface given by (36)
have been together plotted in Fig. 3a. The normal developable surface given by
(36) has been alone illustrated in Fig 3b. The normal developable surface has been
illustrated by reflecting surface in Fig. 4.

Fig. 4. The normal developable surface

Example 3.9. Let the base surface M be given as the following parameterization:

P(s, v)=(cos
s√
2

-
1√
2
v sin

s√
2
, sin

s√
2

+
1√
2
v cos

s√
2
,
s√
2

+
v√
2

). (37)
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Fig. 5a. The base surface and Fig. 5b. The normal developable surface
its normal developable surface

The Darboux vector fields which belong to this surface are found as:

e1 = (− 1√
2

sin
s√
2
,

1√
2

cos
s√
2
,

1√
2

),

e2 = (cos
s√
2
, sin

s√
2
, 0),

e3 = (− 1√
2

sin
s√
2
,

1√
2

cos
s√
2
,− 1√

2
).

The directrix curve β of the normal developable surface is in the following form:

β =
∫ s
0
e3ds

= (cos
s√
2
,− sin

s√
2
,− s√

2
).

The geodesic curvature and geodesic torsion of the base curve are, respectively,
computed as:

κg = −1

2
, and τg =

1

2
.

Then the ruling line ẽ of the normal developable surface is obtained

ẽ = (0, 0,
1√
2

).

As a result, the normal developable surface Mn is given with the below parameteri-
zation:

P̃(s, v) = (cos
s√
2
,− sin

s√
2
,− s√

2
+

v√
2

). (38)

The base surface given by (37) and the normal developable surface given by (38)
have been together plotted in Fig. 5a. The normal developable surface given by
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(38) has been alone illustrated in Fig 5b. The normal developable surface has been
illustrated by reflecting surface in Fig. 6.

Fig. 6. The normal developable surface

4. CONCLUDING REMARKS

In this work, we examined normal developable surface of a surface along a
normal direction curve β. We obtained some results of these kind surfaces. The
methodology used in [7], [8] and here can be applied to the pair ”curve and ruled
surface” in different spaces such as Lorentz-Minkowski space, isotropic space, and
etc. Also choosing the directrix curve of ruled surface as different direction or donor
curves, different studies can be made for curves on ruled surfaces.

Acknowledgement. The authors would like to thank the anonymous reviewers
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