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Abstract. A larger class of algebraic hyperstructures satisfying the ring (field)-like

axioms is the class of Hv-rings (Hv-fields). In this paper, we define the Hv-integral

domain and introduce the Hv-field of fractions of an Hv-integral domain. Also, the

Hv-quotient ring and some relative theorems are presented. Finally, some interesting

results about the Hv-rings of fractions, Hv-quotient rings and the relations between

them are proved.
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1. Introduction and preliminaries

Let H be a non-empty set and P∗(H) be the non-empty subsets of H. A
hyperoperation on H is a mapping ∗ : H ×H −→ P∗(H). The pair (H, ∗) is called
a hypergroupoid. A semi-hypergroup is a hypergroupoid with associative law: (x ∗
y) ∗ z = x ∗ (y ∗ z) for every x, y, z ∈ H; and a hypergroup is a semi-hypergroup
with the reproduction axiom: x ∗ H = H ∗ x = H for every x ∈ H. The theory
of hyperstructures (hypergroup) was introduced by Marty in 1934 during the 8th

Congress of the Scandinavian Mathematics [7]. This theory has been studied in the
following decades and nowadays by many mathematicians. There are applications
to the following subjects: geomemtry, hypergraphs, binary relations, lattices, fuzzy
sets and rough sets. The concept of Hv-structures as a larger class than the well
known hyperstructures was introduced by Vougiouklis in 1990 at Fourth Congress
of AHA where the associative law was replaced by the non-empty intersections:
(x ∗ y) ∗ z ∩ x ∗ (y ∗ z) 6= ∅ for every x, y, z ∈ H. The basic definitions and results
of Hv-structures can be found in [12]. We deal with Hv-rings and Hv-fields. Hv-
rings are the largest class of algebraic systems that satisfy ring-like axioms. In
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[8], Spartalis studied a wide class of Hv-rings resulting from an arbitrary ring by
using the p-hyperoperations. Ghadiri, et al. introduced the concepts of direct limit
and direct system of Hv-modules on an Hv-rings in [4], and n-ary P − Hv-rings
in [6]. Darafsheh and Davvaz defined the Hv-ring of fractions of a commutative
hyperring which is a generalization of the concept of ring of fractions in [1]. In
this paper, we define a zero divisor, an Hv-integral domain and an Hv-field of
fractions which are generalization of concepts. If x ∈ H and A,B ⊆ H then
A ∗ B =

⋃
a∈A,b∈B a ∗ b, A ∗ x = A ∗ {x}, x ∗ B = {x} ∗ B. An Hv-group H

is called weak-commutative if (x ∗ y) ∩ (y ∗ x) 6= ∅ for every x, y ∈ H. A non-
empty subset K of H is called an Hv-subgroup if (K, ∗) is an Hv-group. A triple
(R,+, ·) is called an Hv-ring if (R,+) is an Hv-group, (R, ·) is a semi-Hv-group and
· is weak distributive with respect to +, i.e., (x · (y + z)) ∩ ((x · y) + (x · z)) 6= ∅
and ((x + y) · z) ∩ ((x · z) + (y · z)) 6= ∅. A mapping f : R1 −→ R2 on Hv-rings
(R1,+1, ·1) and (R2,+2, ·2) is called a weak homomorphism if for every x, y ∈ R1

we have (f(x +1 y) ∩ (f(x)) +2 f(y)) 6= ∅, f(x ·1 y) ∩ (f(x) ·2 f(y)) 6= ∅ and is
called strong homomorphism if f(x+1 y) = f(x) +2 f(y), f(x ·1 y) = f(x) ·2 f(y).
For more definitions, results and applications on Hv-rings and Hv-modules, see
[1, 3, 4, 6, 8, 10, 11, 13]. The smallest equivalence relation γ∗ such that the quotient
R/γ∗ is a ring, is called the fundamental relation that is the transitive closure of
the relation γ defined as follows [10]: let N be the set of natural numbers and the
set of all finite polynomials of elements R over N denoted by U (UR). Now,

xγy ⇔ {x, y} ⊆ u ∈ U.

aγ∗b if and only if there exist x1, x2, · · · , xm+1 in R such that x1 = a, xm+1 = b
and there exist u1, u2, · · · , um in U such that {xi, xi+1} ⊆ ui for all i = 1, 2, · · · ,m.
Suppose γ∗(r) is the equivalence class containing r ∈ R. On R/γ∗, the operations
⊕ and � is defined as follows:

γ∗(x)⊕ γ∗(y) = γ∗(c), for all c ∈ γ∗(x) + γ∗(y),
γ∗(x)� γ∗(y) = γ∗(d), for all d ∈ γ∗(x) · γ∗(y).

If φ : R −→ R/γ∗ is the canonical map, then the kernel of φ, ωR = {x ∈ R| φ(x) =
0} is called core of R and is denoted by ωR, where 0 is the identity element of the
group (R/γ∗,⊕). We have ωR ⊕ γ∗(x) = γ∗(x)⊕ ωR = γ∗(x) and

γ∗(x+ y) = γ∗(x)⊕ γ∗(y), γ∗(x · y) = γ∗(x)� γ∗(y),

for all x, y ∈ R and so the map φ : R −→ R/γ∗ defined by φ(x) = γ∗(x) is a strong
homomorphism. An Hv-ring can be commutative with respective either “ + ” or
“ · ”; if it is in both commutative we call it commutative Hv-ring. The expression
(x ∈ x·u = u·x) defines a unit element. A scalar element u is such that u·x and x·u
are single element subsets. Thus the scalar unit u is such that u · x = x · u = {x}.
A non-empty subset I of R is called an Hv-ideal if (I,+) is an Hv-subgroup of
(R,+) and I · R ⊆ I, R · I ⊆ I. A non-empty subset S of R is called a strong
multiplicatively closed subset (s.m.c.s) if 1 ∈ S and S · a = a · S ⊆ S for all a ∈ S.
An Hv-ring is called Hv-field if it’s fundamental ring R/γ∗ is a field.
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The Hv-ring of fractions with relative theorems and results are presented in
section 2. Then in section 3, we define the Hv-integral domain and introduce the
Hv-field of fraction of an Hv-integral domain. In section 4, it is considered an Hv-
ideal I of an Hv-ring R and we introduce the Hv-quotient ring R/I, then find out
the fundamental relation of R/I. Also, some theorems that present the relation
between Hv-field of fractions and Hv-quotient ring are proved.

2. Hv-Ring of Fractions

Throughout this paper we let R be a commutative hyperring with scalar unit
1 and S is a s.m.c.s. of R. It is denoted the operations sum and product of all rings
R, S−1R and quotient rings by +, · and we use index for the hyperoperations with
the same symbols where is any ambiguity, like ⊕R, ⊕S−1R, +R and +S−1R.

For A ⊆ R and B ⊆ S, it is denoted the set {(a, b)| a ∈ A, b ∈ B} by (A,B).
The relation ∼ is defined on P∗(R)× P∗(S) as follows:
(A,B) ∼ (C,D) if and only if there exists a subset X of S such that

X · (A ·D) = X · (B · C).

The relation∼ is an equivalence relation on P∗(R)×P∗(S). Also, for (r, s), (r1, s1) ∈
R×S, define (r, s) ∼ (r1, s1) if and only if there exists A ⊆ S such that A · (r ·s1) =
A · (r1 · s), then the relation ∼ is an equivalence relation on R×S. The equivalence
class containing (r, s) in R×S is denoted by [r, s] and the set of all the equivalence
classes by S−1R. The equivalence class containing (A,B) in P∗(R) × P∗(S) is
denoted by ‖A,B‖. It is defined:

� A,B �=
⋃

(A1,B1)∈‖A,B‖

{[a1, b1]| a1 ∈ A1, b1 ∈ B1},

and so � r, s�=� r.s′, s.s′ �.
The set S−1R with the following hyperoperation:

[r1, s1]⊕ [r2, s2] =
⋃

(A,B)∈‖r1·s2+r2·s1,s1·s2‖{[r, s]| r ∈ A, s ∈ B}
=� r1 · s2 + r2 · s1, s1 · s2 �,

[r1, s1]⊗ [r2, s2] =
⋃

(A,B)∈‖r1·r2,s1·s2‖{[r, s]| r ∈ A, s ∈ B}
=� r1 · r2, s1 · s2 � .

is an Hv-ring, which is called the Hv-ring of fractions of R [1].
For simplicity, we denote the γ∗R, γ∗S−1R and US−1R with γ∗, γ∗s and Us, respectively.

Lemma 2.1. (i) If u ∈ UR then � u, 1�∈ US ,
(ii) For r1, r2 ∈ R; γ∗(r1) = γ∗(r2) implies γ∗s ([r1, 1]) = γ∗s ([r2, 1]).

Proof. The proofs of (i) follows from definitions. For (ii), let γ∗(r1) = γ∗(r2),
so there exist x1, · · · , xm+1 ∈ R and u1, · · · , um ∈ U such that {xi, xi+1} ⊆ ui
for i = 1, · · · ,m. So {[xi, 1], [xi+1, 1]} ⊆� ui, 1 �∈ US and thus γ∗s ([r1, 1]) =
γ∗s ([r2, 1]). �
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This Lemma is used in the proof of the following Theorem. Also we refer to
this Lemma in the next sections.

Theorem 2.2. [1] The following diagram is a commutative diagram of Hv-homomorphisms
and Hv-rings,

R
h //

ϕ

��

S−1R

ϕs

��

R/γ∗R hs

// S−1R/γ∗S−1R

where ϕ and ϕs are canonical maps, h(r) = [r, 1] and hs(γ
∗(r)) = γ∗s ([r, 1]).

Corollary 2.3. If r ∈ ωR and s ∈ S then [r, s] ∈ ωS−1R.

Proof. For r ∈ ωR and hs in Theorem 2.2, we have γ∗(r) = ωR and γ∗s ([r, 1]) =
hs(γ

∗(r)) = hs(ωR) = ωS−1R, because hs is a homomorphism of rings. So for
r ∈ ωR and s ∈ S,

γ∗s ([r, s]) = γ∗s ([r, 1] · [1, s]) = γ∗s ([r, 1])� γ∗s ([1, s]) = ωS−1R � γ∗s ([1, s]) = ωS−1R.

Therefore [r, s] ∈ ωS−1R. �

3. Hv-Integral Domain and Hv-Field of Fractions

To introduce the Hv-field of fraction of a hyperring we need to define the
concepts: of an Hv-zero divisor, an Hv-integral domain and an invertible element.
Also we need an extension of Hv-ideal which is called weak ideal, for completeness
of Hv-fields argument.

Lemma 3.1. ωR is an Hv-ideal of R.

Proof. Let x, y ∈ ωR and r ∈ R, we have:

γ∗(x+ y) = γ∗(x)⊕ γ∗(y) = ωR ⊕ ωR = ωR.

So x+y ⊆ ωR. Also there exits z ∈ R such that y ∈ x+z. So γ∗(y) = γ∗(x)⊕γ∗(z),
ωR = ωR ⊕ γ∗(z) = γ∗(z), then z ∈ ωR
On the other hand we have:

γ∗(r · x) = γ∗(r)� γ∗(x) = γ∗(r)� ωR = ωR.

So R · ωR ⊆ ωR and similarly ωR ·R ⊆ ωR. �
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Definition 3.2. Let a ∈ R, a is called a zero-divisor of R if there exists b ∈ R−ωR
such that a · b ⊆ ωR. The set of all zero-divisors of R denoted by Z(R).

Example 3.3. For x ∈ ωR we have

γ∗(x · a) = γ∗(x)� γ∗(a) = ωR � γ∗(a) = ωR, for every a ∈ R,

so x · a ⊆ ωR and x ∈ Z(R). Therefore ωR ⊆ Z(R).

Definition 3.4. A commutative hyper(Hv-)ring R where 1R /∈ ωR or R 6= ωR is
called a non-trivial hyper(Hv-) ring. Also, a non-trivial hyper (Hv-)ring is called a
hyper (Hv-) integral domain if Z(R) = ωR.

Lemma 3.5. (i) R is an Hv-integral domain if and only if R/γ∗ is an integral
domain.

(ii) Every Hv-field is an Hv-integral domain.

(iii) R is an Hv-integral domain if and only if for every a, b, c ∈ R−ωR, a · b =
a · c⇒ γ∗(b) = γ∗(c).

Proof. (i) Suppose R is an Hv-integral domain, it is clear that γ∗(1) is an unit in
R/γ∗. Since 1R /∈ ωR, then γ∗(1) 6= ωR and R/γ∗ 6= {ωR}. If γ∗(r) ∈ Z(R/γ∗) then
there exists γ∗(x) ∈ R/γ∗ such that γ∗(x) 6= ωR and γ∗(r ·x) = γ∗(r)�γ∗(x) = ωR,
thus r · x ⊆ ωR. From ωR 6= γ∗(x) we have x /∈ ωR and since R is an Hv-integral
domain, r ∈ Z(R) = ωR, so γ∗(r) = ωR. Therefore Z(R/γ∗) = {ωR} and R/γ∗ is
an integral domain. The converse is similarly. By using (i) the proofs of (ii) and
(iii) are straightforward and omitted. �

Definition 3.6. The element x ∈ R is called invertible if there exists y ∈ R such
that 1 ∈ x · y.

Example 3.7. For every Hv-integral domain R;

(i) Every element of a s.m.c.s. of R is invertible,

(ii) If t /∈ ωR, let us denote t0 = 1, t1 = t, t2 = t · t, · · · , tn = t · tn−1 and
St =

⋃
n∈N0

tn, then St is a s.m.c.s. of R.

Theorem 3.8. Let R be a non-trivial hyperintegral domain and S = R−ωR. Then
S−1R is an Hv-integral domain.
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Proof. First, we prove that S = R − ωR is a s.m.c.s of R. For x, y ∈ S, x, y 6∈ ωR
then γ∗(x) 6= ωR 6= γ∗(y). By (i) of Lemma 3.5 x · y * ωR. Then x · y ∩ ωR = ∅
and x · y ⊆ R − ωR = S; because, if t ∈ x · y ∩ ωR, we have r∗(t) = r∗(x · y) = ωR
and so x · y ⊆ ωR, that it is a contradiction by x · y * ωR. Also by reproduction
axiom there exists z ∈ R such that x ∈ y.z. If z ∈ ωR, then ωR = γ∗(y)� γ∗(z) =
γ∗(y · z) = γ∗(x), that is a contradiction. So z ∈ R− ωR = S, and y · S = S. Also
1 ∈ R− ωR = S.

Now we show that; if [a, s] · [b, t] ⊆ ωS−1R, then [a, s] or [b, t] is in ωS−1R.
[a, s] · [b, t] ⊆ ωS−1R implies ωS−1R = γ∗s ([c, d]) for c ∈ γ∗(a · b), d ∈ γ∗(s · t). For
c ∈ γ∗(a · b), we consider two cases; c ∈ ωR and c 6∈ ωR. The second case is not
possible. Because if c 6∈ ωR, c ∈ R − ωR = S and ωS−1R = γ∗s ([c, d])� γ∗s ([d, c]) =
γ∗s ([c, d] · [d, c]) = γ∗s ([t, t]), for t ∈ γ∗(c · d).

For t′ as an invertible of t we have

γ∗s ([1, 1]) = γ∗s ([t′ · t′] · [t, t]) = γ∗s ([t′ · t′])� γ∗s ([t, t]) = ωS−1R,

that is a contradiction and so c ∈ ωR.

If c ∈ ωR, then γ∗(a · b) = γ∗(c) = ωR and a · b ⊆ ωR, so a ∈ ωR or
b ∈ ωR, since R is hyperintegral domain, therefore by corollary 2.3, [a, s] ∈ ωS−1R

or [b, t] ∈ ωS−1R and S−1R is an Hv-integral domain. �

Lemma 3.9. Let R be an Hv-ring, then

(i) x ∈ R is invertible if and only if γ∗(x) is invertible in R/γ∗,

(ii) R is an Hv-field if and only if every element of R− ωR is invertible,

(iii) if R is an Hv-integral domain then a, b ∈ R− ωR if and only if a · b * ωR.

Proof. The proof follows from definitions and (i) of Lemma 3.5 immediately. �

Theorem 3.10. Let R be a hyper integral domain with scalar unit. If S = R−ωR
then (S−1R,⊕,⊗) is an Hv-field. This Hv-field is called the Hv-field of fractions
of R.

Proof. By Lemma 3.9 S−1R is an Hv-integral domain and an Hv-ring of fractions.
So by Lemma 3.9 it is enough to prove S−1R has unit element and every element
of S−1R − ωS−1R is invertible. We know that [a, b] ∈� a, b �=� 1 · a, 1 · b �=⋃

(A,B)∈‖1·a,1·b‖{[x, y]| x ∈ A, y ∈ B} = [1, 1] ⊗ [a, b]. By corollary 2.3 and (iii) of

Lemma 3.9, if [a, b] ∈ S−1R−ωS−1R then a, b /∈ ωR and a·b * ωR. So [b, a] ∈ S−1R.
Then [1, 1] ∈� 1, 1�=� a · b, a · b�= [a, b]⊗ [b, a]. Therefore, [a, b] is invertible
and S−1R is an Hv-field. �
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Definition 3.11. A subset L of Hv-ring R is called weak-ideal (w-ideal) of R if
γ∗(L) is an ideal of R/γ∗.

Lemma 3.12. Let R be an Hv-ring with fundamental relation γ∗ and I be an
Hv-ideal of R, then γ∗(I) is an ideal of R/γ∗.

Proof. If γ∗(x), γ∗(y) ∈ γ∗(I) then there exist i1, i2 ∈ I such that

γ∗(x) = γ∗(i1), γ∗(y) = γ∗(i2).

So, γ∗(x)⊕γ∗(y) = γ∗(i1)⊕γ∗(i2) = γ∗(i) for some i ∈ i1+i2. Thus γ∗(x)⊕ γ∗(y) ∈
γ∗(I).

For associativity law, let γ∗(x), γ∗(y), γ∗(z) ∈ γ∗(I). We have:

γ∗(x)⊕ (γ∗(y)⊕ γ∗(z)) = γ∗(x+ (y + z)),

(γ∗(x)⊕ γ∗(y))⊕ γ∗(z) = γ∗((x+ y) + z).

Since I is an Hv-group, we have (x + (y + z)) ∩ ((x + y) + z) 6= ∅. On the other
hand, the left sides of above equations are single, so we obtain:

γ∗(x)⊕ (γ∗(y)⊕ γ∗(z)) = (γ∗(x)⊕ γ∗(y))⊕ γ∗(z).
Suppose γ∗(x) = γ∗(i1) ∈ γ∗(I) where i1 ∈ I. By reproduction axiom of I there
exists an i ∈ I such that i1 ∈ i1 + i. Thus γ∗(i1) = γ∗(i1)⊕γ∗(i) and ωR = γ∗(i) ∈
γ∗(I) and so γ∗(I) has zero element. If γ∗(y) = γ∗(i2) ∈ γ∗(I) where i2 ∈ I, there
exists i3 ∈ I such that i ∈ i2 + i3. So ωR = γ∗(i) = γ∗(i2)⊕γ∗(i3) and γ∗(i3) is the
inverse of γ∗(i2) in γ∗(I). So γ∗(I) is a subgroup of R/γ∗. Finally, since I is an
Hv-ideal of R, for every r ∈ R we have γ∗(r)� γ∗(I) = γ∗(r · I) ∈ γ∗(I). Therefore
γ∗(I) is an ideal of R/γ∗. �

Example 3.13. (i) Every Hv-ideal is w-ideal,(ii) For a ∈ R, Ra =
⋃
r∈R r · a is a

w-ideal, that is not Hv-ideal necessary.

Example 3.14. By Theorem 3.2.2 of [12], if (H,+) be an Hv-group, then for every
hyperoperation “ · ” such that {x, y} ⊂ x · y for every x, y ∈ H, the hyperstructure
(H,+, ·) is an Hv-ring. So R = {a, b, c, d} with the following hyperoperations is an
Hv-ring:

+ a b c d
a a,b a,b c d
b a,b a,b c d
c c c d a,b
d d d a,b c

· a b c d
a a a,b a,c a,d
b a,b b b,c b,d
c a,c b,c c c,d
d a,d b,d c,d d .

Now I = {a, b, c} is a w-ideal (γ∗(I) = R) but it is not an Hv-ideal (c+ c = d /∈ I).

Definition 3.15. The Hv-ring R is called strong Hv-ring (s-Hv-ring) if every w-
ideal of R be an Hv-ideal of R.
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Theorem 3.16. The non-trivial s-Hv-ring R is an Hv-field if and only if R and
ωR are only w-ideals of R.

Proof. Suppose R and ωR are only w-ideals of R, we show that every element of
R − ωR is invertible. For a ∈ R − ωR we consider the w-ideal R · a. If R · a = ωR
then {a} = 1 · a ⊂ R · a = ωR that is contradiction. So R · a 6= ωR and R · a = R.
Thus 1 ∈ R · a i.e. 1 ∈ x · a for some x ∈ R. Therefore, a is invertible and by
Lemma 3.9 R is an Hv-field.

Conversely, suppose R is an Hv-field i.e. R/γ∗ is a field and every element
of R − ωR is invertible. Let L be a w-ideal of R such that ωR ⊆ L. Suppose
a ∈ L− ωR, then a ∈ R− ωR and there exists b ∈ R such that 1 ∈ a · b ⊆ R · a ⊆ L
(since R is a s-Hv-ring, every w-ideal is an Hv-ideal and so R · a ⊆ L), so L = R.
Therefore, R and ωR are only w-ideals of R. �

Example 3.17. Every Hv-field is a s-Hv-ring. The Hv-ring R in the Example
3.14 is not s-Hv-ring.

4. Hv-Quotient Ring

In this section, we build the quotient Hv-ring by using γ∗, the fundamental
relation of ring.

Theorem 4.1. Let (R,+, ·) be a commutative Hv-ring and I be an Hv-ideal of R.
Define the hyperoperations + and × on R/I = {r + I| r ∈ R} as the following:

(r + I) + (r
′
+ I) = {x+ I| x ∈ γ∗(r + r

′
+ I)} = γ∗(r + r

′
+ I) + I,

(r + I)× (r
′
+ I) = {x+ I| x ∈ γ∗((r · r′) + I)} = γ∗(r · r′ + I) + I.

then (R/I,+,×) is an Hv-ring, this is called Hv-quotient ring R on I.

Proof. We show that “× ” is a well defined hyperoperation. First note that

γ∗(r1 · r2)⊕ γ∗(I) = {γ∗(r1 · r2)⊕ γ∗(i)| i ∈ I}
= {γ∗(r1 · r2 + i)| i ∈ I}
= γ∗(r1 · r2 + I).

Suppose r1 + I = r
′

1 + I and r2 + I = r
′

2 + I then γ∗(ri)⊕ γ∗(I) = γ∗(r
′

i)⊕ γ∗(I)

for i = 1, 2 and they are elements of ordinary quotient ring R/γ∗

γ∗(I) . Thus

(γ∗(r1)⊕ γ∗(I))⊗ (γ∗(r2)⊕ γ∗(I)) = (γ∗(r
′

1)⊕ γ∗(I))⊗ (γ∗(r
′

2)⊕ γ∗(I))

(γ∗(r1)⊗ γ∗(r2))⊕ γ∗(I)) = (γ∗(r
′

1)⊗ γ∗(r′2))⊕ γ∗(I))

γ∗(r1 · r2)⊕ γ∗(I) = γ∗(r
′

1 · r
′

2)⊕ γ∗(I)

γ∗(r1 · r2 + I) = γ∗(r
′

1 · r
′

2 + I)

γ∗(r1 · r2 + I) + I = γ∗(r
′

1 · r
′

2 + I) + I

(r1 + I)× (r2 + I) = (r
′

1 + I)× (r
′

2 + I).
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One can similarly investigate the other axioms in order to R/I is an Hv-ring. �

Proposition 4.2. If I and J are Hv-ideals of the Hv-ring R and γ∗(J) ⊆ I, then
I
J is an Hv-ideal of R

J .

Proof. If i1, i2 ∈ I, then (i1 + J) + (i2 + J) = {x + I| x ∈ γ∗(i1 + i2 + J)} ⊆ I

J
.

Let x+ J, y + J ∈ I
J by the reproduction axiom for I, there exists z ∈ I such that

x ∈ y+ z, so x+ J ∈ (y+ J) + (z+ J). Now for every r+ J ∈ R
J and i+ J ∈ I

J we

have (r + J)× (i+ J) = {x+ J | x ∈ γ∗((r · i) + J)} ⊆ I
J , since I is an Hv−ideal.

Similarly (i+ J)× (r + J) ⊆ I
J . Therefore I

J is an Hv-ideal of R
J . �

Definition and Lemma 4.3. [1] An Hv-ideal I is called an Hv-isolated ideal if it
satisfies the following axiom:

For all X ⊆ I, Y ⊆ S if (M,N) ∈ ‖X,Y ‖, then M ⊆ I.
For Hv-isolated ideal I of R, S−1I = {[a, s]| a ∈ I, s ∈ S} is an Hv-ideal of S−1R.

So, if I is an Hv-isolated ideal of R, then S−1R
S−1I is an Hv-ring. Now by the

following Lemma, we build a commutative diagram that relate the Hv-quotient
rings and the Hv-ring of fractions.

It is straightforward to see that every element of UR/I is of the form γ∗(ui +
I) + I for ui ∈ U . So every expression of finite hyperoperations applied on finite
subsets of R/I is equal to γ∗(u+ I) + I for some u ∈ U .

Lemma 4.4. If γ∗ and γ∗I are the fundamental relations of Hv-rings R and R/I
respectively, then γ∗I (r1 + I) = γ∗I (r2 + I) if and only if γ∗(r1 + I) = γ∗(r2 + I).

Proof. For some r1, r2 ∈ R, suppose γ∗I (r1 + I) = γ∗I (r2 + I) then there exist
u1, u2, · · · , um ∈ U and x1, x2, · · · , xm+1 ∈ R such that

x1 + I = r1 + I, xm+1 + I = r2 + I,

{xi + I, xi+1 + I} ⊆ ui + I for i = 1, 2, · · · ,m.
Thus

γ∗(x1)⊕ γ∗(I) = γ∗(r1)⊕ γ∗(I), γ∗(xm+1)⊕ γ∗(I) = γ∗(r2)⊕ γ∗(I),

{γ∗(x1)⊕ γ∗(I), γ∗(xi+1)⊕ γ∗(I)} ⊆ γ∗(ui + I)⊕ γ∗(I) for ui ∈ U.
Let for i = 1, 2, · · · ,m, ui ∈

∑ni [ri1 · · · riki ·
∑jk uij ] where uij ∈ R, j =

1, 2, · · · , jk, k = 1, 2, · · · , ni. Note that in this combination for ui the order of
hyperoperation omitted because this order is not important in γ∗(ui). Now by
properties of fundamental relation, we have

γ∗(ui) = ⊕ni [γ∗(ri1)� · · · � γ∗(riki)� (⊕jkγ∗(uij))] = γ∗(ti) for every ti ∈ ui.
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Since γ∗(I) is an ideal of γ∗(R) then γ∗(xi)+γ∗(I), γ∗(ui)⊕γ∗(I) and γ∗(ti)+γ∗(I)
are cosets of γ∗(I) in R/γ∗, thus

γ∗(xi)⊕ γ∗(I) = γ∗(xi+1)⊕ γ∗(I) = γ∗(ti)⊕ γ∗(I) for i = 1, 2, · · · ,m.

Therefore γ∗(r1)⊕ γ∗(I) = γ∗(r2)⊕ γ∗(I).

Conversely, if γ∗(r1)⊕ γ∗(I) = γ∗(r2)⊕ γ∗(I) then γ∗(r1 + I) = γ∗(r2 + I).
So for every s1 ∈ r1 + I there exists s2 ∈ r2 + I such that γ∗(s1) = γ∗(s2). Thus
there exist x1, x2, · · · , xm+1 ∈ I, u1, u2, · · · , um ∈ U such that x1 = s1, xm+1 = s2

and {xi, xi+1} ⊆ ui for i = 1, 2, · · · ,m. Thus x1 + I = s1 + I, xm+1 + I =
s2 + I, {xi + I, xi+1 + I} ⊆ ui + I for i = 1, 2, · · · ,m. By definition of γ∗I , we
conclude that γ∗I (s1 + I) = γ∗I (s2 + I) and so γ∗I (r1 + I) = γ∗I (r2 + I). �

Theorem 4.5. Let I be an Hv-isolated ideal of R. Then the following diagram of
Hv-homomorphisms and Hv-rings are commutative.

R
γ∗

f̄
//

hs

����

R
I /γ

∗

h̄s

��

R

ϕ

<<

f
//

h

��

R
I

ϕ̄
::

h̄

��

S−1R
γ∗s

f̄s //// S
−1R
S−1I /δ

∗
s

S−1R
fs //

ϕs

<<

S−1R
S−1I

ϕ̄s

;;

Proof. We prove that the left, up and front faces diagrams of cube are commutative
diagrams of Hv-homomorphisms and Hv-rings. The left face diagram is the diagram
in Theorem 2.2. For front face diagram we define the mappings in the diagram as
the following; f by f(r) = r + I, h by h(r) = [r, 1], h̄ by h̄(r + I) = [r, 1] + S−1I
and fs by fs([r, s]) = [r, s] + S−1I. By the proof of Theorem 2.2, h is an Hv-
homomorphisms. It is easy to see that f and fs are Hv-homomorphisms. Now we
have

h̄((r1 + I) + (r2 + I)) = h̄({x+ I| x ∈ γ∗(r1 + r2 + I)})
= {[x, 1] + S−1I| x ∈ γ∗(r1 + r2 + I)},
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and

h̄(r1 + I) + h̄(r2 + I) = [r1, 1] + S−1I + [r2, 1] + S−1I
= {[x, s] + S−1I| [x, s] ∈ γ∗S([r1, 1] + [r2, 1] + S−1I)}
=
{

[x, s] + S−1I| [x, s] ∈ γ∗S([r, 1] + S−1I),

r ∈ γ∗S(r1 + r2)
}
.

By setting x = r ∈ r1 + r2 and s = 1 we have

[r, s] + S−1I ∈ h̄((r1 + I) + (r2 + I)) ∩ (h̄(r1 + I) + h̄(r2 + I)) 6= ∅.

Similarly we obtain h̄((r1 + I)× (r2 + I))∩ (h̄(r1 + I)× h̄(r2 + I)) 6= ∅. Finally, for
commutativity, for every r ∈ R we have:

h̄(f(r)) = h̄(r + I) = [r, 1] + S−1I,

fs(h(r)) = fs([r, 1]) = [r, 1] + S−1I.

In the up face diagram; ϕ and ϕ̄ are the canonical strong homomorphisms of
R and R/I related to fundamental ring R/γ∗ and R

I /γ
∗
I , respectively. Define f̄ by

f̄(γ∗(r)) = γ∗I (r + I). For r1, r2 ∈ R, we have:

γ∗(r1) = γ∗(r2) ⇒ γ∗(r1) + γ∗(I) = γ∗(r2) + γ∗(I)

⇒ γ∗(r1 + I) = γ∗(r2 + I)

⇒ γ∗I (r1 + I) = γ∗I (r2 + I), by Lemma 4.4.

Therefore, f̄ is well defined. Also

f̄(γ∗(r1) + γ∗(r2)) = f̄(γ∗(r1 + r2))

= f̄(γ∗(t)) = γ∗I (t+ I), for some t ∈ r1 + r2. (1)

On the other hand

f̄(γ∗(r1)) + f̄(γ∗(r2)) = γ∗I (r1 + I) + γ∗I (r2 + I)

= γ∗I (t+ I), for some t ∈ γ∗(r1 + r2 + I). (2)

Since r1 + r2 ⊆ γ∗(r1 + r2) ⊆ γ∗(r1 + r2 + I), the statements in (1) and (2) are
equal and f̄ is a strong homomorphism. Also ϕ̄(f(r)) = ϕ̄(r + I) = γ∗I (r + I) and
f̄(ϕ(r)) = f̄(γ∗(r)) = γ∗I (r + I).

The diagram in other faces get from discussed diagrams by replacing R/I,
S−1R, S−1I, γ∗s , γ∗Is instead of R,R, I, γ∗, γ∗I , respectively and so these diagrams
are commutative diagrams of Hv-homomorphisms and Hv-rings. �

Theorem 4.6. Let I and J be Hv-ideals of Hv-rings R such that I ⊆ L ⊆ R then

(i) L/I is a w-ideal of R/I,

(ii) γ∗I (LI ) ∼= γ∗(L)
γ∗(I) .
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Proof. (i) We know L
I = {l + I| l ∈ L}, γ∗I (LI ) = {γ∗I (l + I)| l ∈ L}. Suppose

l1 + I, l2 + I ∈ L
I and r + I ∈ R

I , we show that

γ∗I (l1 + I)⊕ γ∗I (l2 + I) ∈ γ∗I (
L

I
) and γ∗I (r + I)⊗ γ∗I (l1 + I) ∈ γ∗I (

L

I
).

For t ∈ γ∗(l1 + l2 + I) we have

γ∗(t) ∈ γ∗(l1 + l2 + I) = γ∗(l1 + l2)⊕ γ∗(I),

and

γ∗(t+ I) = γ∗(t)⊕ γ∗(I) = γ∗(l1 + l2)⊕ γ∗(I) = γ∗(l)⊕ γ∗(I), where l ∈ l1 + l2.

Thus for every t ∈ γ∗(l1 + l2 + I) and l ∈ l1 + l2:

γ∗(t+ I) = γ∗(l + I),

γ∗I (t+ I) = γ∗I (l + I), by Lemma 4.4.

Therefore

γ∗I (l1 + I)⊕ γ∗I (l2 + I) = γ∗I (t+ I), for some t ∈ γ∗(l1 + l2 + I)

= γ∗I (l + I), for some l ∈ l1 + l2

∈ γ∗I (
L

I
).

And by similar argument, we conclude:

γ∗I (r + I)⊗ γ∗I (l1 + I) ∈ γ∗I (
L

I
).

(ii) Define θ : γ∗I (LI ) −→ γ∗(L)
γ∗(I) by θ(γ∗I (l+ I)) = γ∗(l)⊕ γ∗(I). By Lemma 4.4, θ is

an one to one mapping. Let l1 + I, l2 + I ∈ L
I , we have

θ(γ∗I (l1 + I)⊕ γ∗I (l2 + I)) = θ(γ∗I [(l1 + I) + (l2 + I)])
= θ(γ∗I [γ∗(l1 + l2 + I) + I])
= θ(γ∗I (x+ I)), for some x ∈ γ∗(l1 + l2 + I)
= γ∗(x)⊕ γ∗(I), for some x ∈ γ∗(l1 + l2 + I)
= γ∗(l1 + l2)⊕ γ∗(I)
= (γ∗(l1)⊕ γ∗(l2))⊕ γ∗(I)
= (γ∗(l1)⊕ γ∗(I))⊕ (γ∗(l2)⊕ γ∗(I))
= θ(γ∗(l1 + I))⊕ θ(γ∗(l2 + I)).

And so

θ(γ∗I (r + I)⊗ γ∗I (l1 + I)) = θ(γ∗I ((r + I)× (l1 + I)))
= θ(γ∗I (γ∗(r · l1 + I) + I))
= θ(γ∗I (x+ I)), where x ∈ γ∗(r · l1 + I)
= γ∗(x)⊕ γ∗(I), for some x ∈ γ∗(r · l1 + I)
= γ∗(r · l1)⊕ γ∗(I)
= γ∗(r)� γ∗(l1)⊕ γ∗(I)
= (γ∗(r)⊕ γ∗(I))⊗ (γ∗(l1)⊕ γ∗(I))
= θ(γ∗I (r + I))⊗ θ(γ∗I (l1 + I)).
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�

Corollary 4.7. Let I and J are Hv-ideals of an Hv-ring R and I ⊆ J , then

(i) R/I
γ∗I
∼= γ∗(R)

γ∗(I) ,

(ii) ωR
I

= γ∗(I) + I,

(iii) ω R
ωR

= ωR.

Proof. (i) is immediate corollary of Theorem 4.6.

(ii) Consider the isomorphism θ : R/Iγ∗I
−→ γ∗(R)

γ∗(I) similar to Theorem 4.6 (ii), then

by (i)

ωR/I = {r + I| θ(γ∗I (r + I)) = γ∗(I)}
= {r + I| γ∗(r)⊕ γ∗(I) = γ∗(I)}
= γ∗(I) + I.

(iii) By using the proof of (ii) we have ω R
ωR

= γ∗(ωR) + ωR = ωR + ωR = ωR. �

Proposition 4.8. Let M be a maximal Hv-ideal of an s-Hv-ring R then γ∗(M) is
a maximal ideal of R/γ∗.

Proof. We prove that γ∗(M) ⊕ R/γ∗ ⊗ X = R/γ∗ for every X ∈ R/γ∗ − γ∗(M).
Suppose for some x ∈ R, γ∗(x) = X ∈ R/γ∗ − γ∗(M), so x /∈ M . But γ∗(M +
R · x) = γ∗(M) ⊕ R/γ∗ ⊗ γ∗(x) is an ideal of R/γ∗ and M + R · x is a w-ideal of
R so M + R · x is an Hv-ideal of R. Therefore, M + R · x = R and γ∗(M) + R/
γ∗ ⊗X = γ∗(R). �

Theorem 4.9. (First homomorphism theorem) Let f : R −→ S be a strong
homomorphism of Hv-rings and I = ker f , then ϕ : R/I −→ S/ωS where ϕ(r+I) =
f(r) + ωS is an Hv-homomorphism of Hv-rings.

Proof. For r1 + I, r2 + I ∈ R/I;

r1 + I = r2 + I ⇒ f(r1) + f(I) + ωS = f(r2) + f(I) + ωS

⇒ f(r1) + ωS = f(r2) + ωS , since f(I) ⊆ ωS .

So ϕ is well defined.
For t0 ∈ r1 + r2 we have:

f(t0) ∈ f(r1 + r2) ⊆ γ∗(f(r1 + r2))⊕ ωS = γ∗(f(r1 + r2) + ωS), (3)

t0 ∈ γ∗(t0) ∈ γ∗(t0)⊕ γ∗(I) = γ∗(r1 + r2)⊕ γ∗(I) = γ∗(r1 + r2 + I). (4)
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Also

ϕ((r1 + I) + (r2 + I)) = ϕ(γ∗(r1 + r2 + I) + I)

= {f(t) + ωS | t ∈ γ∗(r1 + r2 + I)},

ϕ(r1 + I) + ϕ(r2 + I) = (f(r1) + ωS) + (f(r2) + ωS)

= γ∗((f(r1) + f(r2) + ωS) + ωS)

= γ∗(f(r1 + r2) + ωS) + ωS

= {s+ ωS | s ∈ γ∗(f(r1 + r2) + ωS)}.

Then by (3) and (4), for t0 ∈ r1 + r2,

f(t0) + ωS ∈ ϕ((r1 + I) + (r2 + I)) ∩
(
ϕ(r1 + I) + ϕ(r2 + I)

)
,

For u0 ∈ r1 · r2, we have

f(u0) ∈ f(r1 · r2) ⊆ γ∗(f(r1 · r2))⊕ ωS = γ∗(f(r1 · r2) + ωS), (5)

u0 ∈ γ∗(u0) ∈ γ∗(u0)⊕ γ∗(I) = γ∗(r1 · r2)⊕ γ∗(I) = γ∗(r1 · r2 + I). (6)

ϕ((r1 + I) · (r2 + I)) = ϕ(γ∗(r1 · r2 + I) + I)

= {f(t) + ωS | t ∈ γ∗(r1 · r2 + I)},

ϕ(r1 + I) · ϕ(r2 + I) = {s+ ωS | s ∈ γ∗(f(r1 · r2) + ωS)}.
Therefore, by (5) and (6), f(u0)+ωS ∈ ϕ((r1 +I) · (r2 +I))∩ (ϕ(r1 +I) ·ϕ(r2 +I)),
and ϕ is an Hv-homomorphism of Hv-rings. �
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