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Abstract. A larger class of algebraic hyperstructures satisfying the ring (field)-like
axioms is the class of Hy,-rings (Hy-fields). In this paper, we define the H,-integral
domain and introduce the H,-field of fractions of an H,-integral domain. Also, the
H,-quotient ring and some relative theorems are presented. Finally, some interesting
results about the H,-rings of fractions, H,-quotient rings and the relations between
them are proved.
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1. INTRODUCTION AND PRELIMINARIES

Let H be a non-empty set and P*(H) be the non-empty subsets of H. A
hyperoperation on H is a mapping * : H x H — P*(H). The pair (H, %) is called
a hypergroupoid. A semi-hypergroup is a hypergroupoid with associative law: (xz *
y)*z = x * (y * z) for every z,y,z € H; and a hypergroup is a semi-hypergroup
with the reproduction axiom: z « H = H xx = H for every x € H. The theory
of hyperstructures (hypergroup) was introduced by Marty in 1934 during the 8"
Congress of the Scandinavian Mathematics [7]. This theory has been studied in the
following decades and nowadays by many mathematicians. There are applications
to the following subjects: geomemtry, hypergraphs, binary relations, lattices, fuzzy
sets and rough sets. The concept of H,-structures as a larger class than the well
known hyperstructures was introduced by Vougiouklis in 1990 at Fourth Congress
of AHA where the associative law was replaced by the non-empty intersections:
(xxy)*zNxzx*(y*z)# D for every x,y,z € H. The basic definitions and results
of H,-structures can be found in [12]. We deal with H,-rings and H,-fields. H,-
rings are the largest class of algebraic systems that satisfy ring-like axioms. In
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[8], Spartalis studied a wide class of H,-rings resulting from an arbitrary ring by
using the p-hyperoperations. Ghadiri, et al. introduced the concepts of direct limit
and direct system of H,-modules on an H,-rings in [4], and n-ary P — H,-rings
in [6]. Darafsheh and Davvaz defined the H,-ring of fractions of a commutative
hyperring which is a generalization of the concept of ring of fractions in [1]. In
this paper, we define a zero divisor, an H,-integral domain and an H,-field of
fractions which are generalization of concepts. If x € H and A,B C H then
AxB = U,capepaxb, Axz = Ax{z}, v+ B = {z}*B. An H,-group H
is called weak-commutative if (x * y) N (y * x) # O for every z,y € H. A non-
empty subset K of H is called an H,-subgroup if (K,*) is an H,-group. A triple
(R,+,) is called an H,-ring if (R, +) is an H,-group, (R, -) is a semi-H,-group and
- is weak distributive with respect to +, i.e., (- (y+2)) N ((z-y)+ (x-2)) # 0
and ((x+y)-2)N((z-2)+ (y-2)) # 0. A mapping f: Ry — Re on H,-rings
(R1,+1,1) and (Rg,+2,2) is called a weak homomorphism if for every z,y € Ry
we have (f(z +19) N (F(2) +2 £(1)) # 0, F(@ 19) N (f(z) 2 () # 0 and is
called strong homomorphism if f(z +1 y) = f(z) +2 f(y), f(z1y) = f(z) 2 f(y).
For more definitions, results and applications on H,-rings and H,-modules, see
[1, 3,4, 6,8, 10, 11, 13]. The smallest equivalence relation v* such that the quotient
R/~* is a ring, is called the fundamental relation that is the transitive closure of
the relation 7 defined as follows [10]: let N be the set of natural numbers and the
set of all finite polynomials of elements R over N denoted by U (Ug). Now,

vy < {z,yt Cuel.

ay*b if and only if there exist x1,x9, -+ ,Zpmy1 in R such that 1 = a, 241 =0
and there exist uy,ug, -+ , Uy, in U such that {x;,z;41} Cw; foralli=1,2,--- ;m.
Suppose y*(r) is the equivalence class containing r € R. On R/~*, the operations
@ and © is defined as follows:

v (z) @9 (y) =7"(c), for all c € v*(x) +v*(y),
v (2) ©v*(y) =7"(d), for all d € v*(x) - v*(y).

If ¢ : R — R/~* is the canonical map, then the kernel of ¢, wg = {x € R| ¢(x) =
0} is called core of R and is denoted by wg, where 0 is the identity element of the
group (R/v*,®). We have wr & v*(z) = v*(z) ® wg = v*(z) and

Y (z+y) =7(@) @7 (v), v (z-y) =7"(2) ©v" (),

for all z,y € R and so the map ¢ : R — R/~* defined by ¢(z) = v*(z) is a strong
homomorphism. An H,-ring can be commutative with respective either “+” or
“.7.if it is in both commutative we call it commutative H,-ring. The expression
(x € x-u = u-x) defines a unit element. A scalar element u is such that u-2 and z-u
are single element subsets. Thus the scalar unit u is such that v - =z - u = {z}.
A non-empty subset I of R is called an H,-ideal if (I,+) is an H,-subgroup of
(R,+)and I-R C I, R-1 CI. A non-empty subset S of R is called a strong
multiplicatively closed subset (s.m.c.s)if 1 € Sand S-a=a-5SC SforallaeS.

An H,-ring is called H,-field if it’s fundamental ring R/v* is a field.
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The H,-ring of fractions with relative theorems and results are presented in
section 2. Then in section 3, we define the H,-integral domain and introduce the
H,-field of fraction of an H,-integral domain. In section 4, it is considered an H,,-
ideal I of an H,-ring R and we introduce the H,-quotient ring R/I, then find out
the fundamental relation of R/I. Also, some theorems that present the relation
between H,-field of fractions and H,-quotient ring are proved.

2. H,-RING OF FRACTIONS

Throughout this paper we let R be a commutative hyperring with scalar unit
1 and S is a s.m.c.s. of R. It is denoted the operations sum and product of all rings
R, S7'R and quotient rings by +, - and we use index for the hyperoperations with
the same symbols where is any ambiguity, like ®r, ®g-15, +r and +g-15.

For AC R and B C S, it is denoted the set {(a,b)| a € A,b € B} by (A, B).
The relation ~ is defined on P*(R) x P*(S) as follows:
(A, B) ~ (C, D) if and only if there exists a subset X of S such that

X-(A-D)=X-(B-0).
The relation ~ is an equivalence relation on P*(R)xP*(S). Also, for (r,s), (r1,51) €
R x S, define (r, s) ~ (r1, s1) if and only if there exists A C S such that A-(r-s1) =
A-(ry-s), then the relation ~ is an equivalence relation on R x S. The equivalence
class containing (r, s) in R x S is denoted by [r, s] and the set of all the equivalence
classes by ST'R. The equivalence class containing (A4, B) in P*(R) x P*(S) is
denoted by || A4, B||. It is defined:

< A, B>= U {[al,b1]| ay € Ay, by EBl},
(A1,B1)€||A,B||

and so K 1,5 >=<K 1.5, 5.5 >.
The set S~'R with the following hyperoperation:

[Th 81] @ [TQ’ 82] = U(A7B)€Hr1~32+r2~31751-52H{[T7 SH e A’ ERS B}
=K 7r1-8 +1r9- 81,81+ 82 >>,

[r1,s1] @ [r2,50] = U(A,B)e\|r1~r2,S1~82H{[Tv s]| r€ A, s € B}
=K ry 79,8182 > .
is an H,-ring, which is called the H,-ring of fractions of R [1].
For simplicity, we denote the v%, v5_1 z and Ug-1g with v*, 75 and Us, respectively.

Lemma 2.1. (i) If u € Ug then < u,1 >€ Usg,
(ii) For ri,7m9 € R; v*(r1) = v*(r2) implies v ([r1,1]) = v ([r, 1]).

Proof. The proofs of (i) follows from definitions. For (ii), let v*(r1) = v*(r2),
so there exist x1, -+ ,zmy1 € R and ug, -+ ,u, € U such that {x;, x;01} C u;
for i = 1,--- ,m. So {[x;,1],[zit1,1]} €K u;,1 >€ Ug and thus vi([r1,1]) =
72 ([r2, 1)) O
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This Lemma is used in the proof of the following Theorem. Also we refer to
this Lemma in the next sections.

Theorem 2.2. [1] The following diagram is a commutative diagram of H,-homomorphisms
and H,-rings,
h

R SR

Rjvp ———— 9 'R/75p

where @ and ps are canonical maps, h(r) = [r,1] and hs(v*(r)) = v3([r, 1]).

Corollary 2.3. Ifr € wg and s € S then [r,s| € wg-1p.

Proof. For r € wg and hy in Theorem 2.2, we have v*(r) = wg and v([r,1]) =
hs(v*(r)) = hs(wr) = wg-1R, because hg is a homomorphism of rings. So for
r € wg and s € 5,

Ve[ s]) = 25 ([r 1] - [, 8]) = 25 ([, 1) © (L 8]) = ws-1r O (1, 8]) = wg-1R-
Therefore [r, s] € wg-1g. O

3. H,-INTEGRAL DOMAIN AND H,-FIELD OF FRACTIONS

To introduce the H,-field of fraction of a hyperring we need to define the
concepts: of an H,-zero divisor, an H,-integral domain and an invertible element.
Also we need an extension of H,-ideal which is called weak ideal, for completeness
of H,-fields argument.

Lemma 3.1. wg is an H,-ideal of R.

Proof. Let x,y € wg and r € R, we have:
V(@ +y) =7"(2) ©7(y) = wr ©wr = wr.
So x4y C wg. Also there exits z € R such that y € z+2z. Sov*(y) = v*(x)®v*(2),
wr = wgr ®v*(2) =7*(2), then 2z € wg
On the other hand we have:
V(rex) =77(r) 07" (2) =77 (r) Owr = wr.
So R-wr C wg and similarly wg - R C wg. ([l
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Definition 3.2. Leta € R, a is called a zero-divisor of R if there exists b € R—wp
such that a -b C wgr. The set of all zero-divisors of R denoted by Z(R).

Example 3.3. For x € wr we have
Y (z-a) =7 (x) ©7*(a) = wg ® " (a) = wg, for every a € R,
sox-a Cwr and v € Z(R). Therefore wp C Z(R).
Definition 3.4. A commutative hyper(H,-)ring R where 1p ¢ wg or R # wg is

called a non-trivial hyper(H,-) ring. Also, a non-trivial hyper (H,-)ring is called a
hyper (H,-) integral domain if Z(R) = wg.

Lemma 3.5. (i) R is an Hy-integral domain if and only if R/~* is an integral
domain.

(ii) Ewvery H,-field is an H,-integral domain.

(iii) R is an H,-integral domain if and only if for every a,b,c € R —wgr, a-b =
a-c="(b) =7"(c).

Proof. (i) Suppose R is an H,-integral domain, it is clear that v*(1) is an unit in
R/~*. Since 1 ¢ wg, then v*(1) # wr and R/v* # {wgr}. If v*(r) € Z(R/~*) then
there exists v*(x) € R/~* such that v*(x) # wgr and v*(r-z) = v*(r) ©v*(z) = wrg,
thus 7 - ¢ C wr. From wg # v*(z) we have « ¢ wg and since R is an H,-integral
domain, r € Z(R) = wg, so v*(r) = wg. Therefore Z(R/~v*) = {wr} and R/v* is
an integral domain. The converse is similarly. By using (i) the proofs of (ii) and
(iii) are straightforward and omitted. O

Definition 3.6. The element x € R is called invertible if there exists y € R such
that 1 € = - y.

Example 3.7. For every H,-integral domain R;

(i) Every element of a s.m.c.s. of R is invertible,

(ii) If t ¢ wg, let us denote t° = 1,t' = t, 42 =t -t,--- 1" = t-t"" ! and
St =Upnen, t"s then Si is a s.m.c.s. of R.

Theorem 3.8. Let R be a non-trivial hyperintegral domain and S = R—wpr. Then
STIR is an H,-integral domain.
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Proof. First, we prove that S = R — wg is a s.m.c.s of R. For z,y € S, =,y € wgp
then v*(z) # wr # 7*(y). By (i) of Lemma 3.5 -y € wg. Then z -y Nwg = 0
and -y C R —wgr = S; because, if t € -y Nwg, we have () = r*(z - y) = wg
and so z -y C wg, that it is a contradiction by z -y € wg. Also by reproduction
axiom there exists z € R such that x € y.z. If z € wg, then wg = v*(y) @ v*(z) =
v*(y - z) = v*(x), that is a contradiction. So z € R —wr =5, and y- S = S. Also
leR—wr=2>_S.

Now we show that; if [a,s] - [b,t] C wg-1p, then [a,s] or [b,t] is in wg-15.
[a,s] - [b,t] C wg-1x implies wg-1zr = Vi ([c,d]) for ¢ € v*(a - b), d € v*(s - t). For
c € v*(a-b), we consider two cases; ¢ € wg and ¢ € wr. The second case is not
possible. Because if ¢ ¢ wg, c € R —wg = S and wg-15 = i ([¢,d]) © vi([d,c]) =
s (e, d] - [d, ¢]) = 7 ([t 2]), for t € 7 (c - d).

For t' as an invertible of ¢ we have

Ye([L 1) =[] [t t]) = 72 ([t - ) © 92 ([t 1) = ws-1,
that is a contradiction and so ¢ € wg.
If ¢ € wg, then v*(a - b) = v*(¢) = wg and a -b C wg, S0 a € wgr or
b € wg, since R is hyperintegral domain, therefore by corollary 2.3, [a,s] € wg-1p
or [b,t] € wg-1z and SR is an H,-integral domain. (I

Lemma 3.9. Let R be an H,-ring, then
(i) = € R is invertible if and only if v*(x) is invertible in R/v*,

(ii) R is an H,-field if and only if every element of R — wg is invertible,

(iii) #f R is an H,-integral domain then a,b € R —wg if and only if a-b € wg.

Proof. The proof follows from definitions and (i) of Lemma 3.5 immediately. O

Theorem 3.10. Let R be a hyper integral domain with scalar unit. If S = R —wg
then (SR, ®,®) is an H,-field. This H,-field is called the H,-field of fractions
of R.

Proof. By Lemma 3.9 S~'R is an H,-integral domain and an H,-ring of fractions.
So by Lemma 3.9 it is enough to prove S~!R has unit element and every element
of ST'R — wg-1p is invertible. We know that [a,b] €< a,b >=< 1-a,1-b>=
Uapyejrars iz yll = € A,y € B} = [1,1] ® [a, b]. By corollary 2.3 and (iii) of
Lemma 3.9, if [a,b] € ST'R—wg-15 then a,b ¢ wr and a-b € wg. So [b,a] € STIR.
Then [1,1] e 1,1 >=<a-b,a-b>= [a,b] ® [b,a]. Therefore, [a,d] is invertible
and SR is an H,-field. O
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Definition 3.11. A subset L of H,-ring R is called weak-ideal (w-ideal) of R if
~v*(L) is an ideal of R/~*.

Lemma 3.12. Let R be an H,-ring with fundamental relation v* and I be an
H,-ideal of R, then ~*(I) is an ideal of R/v*.

Proof. If v*(x),v*(y) € v*(I) then there exist 41,42 € I such that

V(@) =" (i), v (y) =" (i2).
So, v*(z)Dv*(y) = v*(i1)®vy* (i2) = v*(4) for some i € i1 +i. Thus v*(x)® v*(y) €
(1)

For associativity law, let v*

(@),7*(y),7*(2) € y*(I). We have:
T (@) (V) &7 () =7 (@ + (y + 2)),
)

(V@) &7 (y) &7 (z) =7 ((x +y) + 2).
Since I is an H,-group, we have (x + (y +2)N((z+y)+2) # 0. On the other
hand, the left sides of above equations are single, so we obtain:

T (@) e (Y (y) @y (z) = (v (@) @7 (y) &7 (2)-

Suppose v*(z) = v*(i1) € v*(I) where i; € I. By reproduction axiom of I there
exists an ¢ € I such that iy € i1 +4. Thus v*(i1) = v*(41) ®v* (i) and wgp = v*(4) €
~v*(I) and so v*(I) has zero element. If v*(y) = v*(i2) € v*(I) where iy € I, there
exists i3 € I such that i € ig +43. Sowr = 7y*(i) =~

inverse of v*(i2) in v*(I). So v*(I) is a bubgro up of R/~*. Finally, since I is an
H,-ideal of R, for every r € R we have v*(r) ©@v*(I) = v*(r-I) € v*(I). Therefore
~v*(I) is an ideal of R/~*. O

2(i2) ©1"(is) and 7" () i the

Example 3.13. (i) Every H,-ideal is w-ideal,(ii) For a € R, Ra =J,cp7-a is a
w-ideal, that is not H,-ideal necessary.

Example 3.14. By Theorem 3.2.2 of [12], if (H,+) be an H,-group, then for every
hyperoperation “-” such that {x,y} C x -y for every x,y € H, the hyperstructure
(H,+,-) is an H,-ring. So R = {a,b,c,d} with the following hyperoperations is an
H,-ring:

+ ‘ a b c d . ‘ a b c d
alab ab c d a|l a ab ac a,d
b|ab ab ¢ d blab b b bd
cl| ¢ c d ab c|ac bec ¢ c¢d
d| d d ab c d|ad bd c,d d

Now I = {a,b,c} is a w-ideal (v*(I) = R) but it is not an H,-ideal (c+c=d ¢ I).

Definition 3.15. The H,-ring R is called strong H,-ring (s-H,-ring) if every w-
ideal of R be an H,-ideal of R.
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Theorem 3.16. The non-trivial s-H,-ring R is an H,-field if and only if R and
wg are only w-ideals of R.

Proof. Suppose R and wg are only w-ideals of R, we show that every element of
R — wg is invertible. For a € R — wgr we consider the w-ideal R-a. If R-a = wgr
then {a} =1-a C R-a = wg that is contradiction. So R-a # wgr and R-a = R.
Thus 1 € R-a i.e. 1 € x-a for some x € R. Therefore, a is invertible and by
Lemma 3.9 R is an H,-field.

Conversely, suppose R is an H,-field i.e. R/v* is a field and every element
of R — wg is invertible. Let L be a w-ideal of R such that wg C L. Suppose
a € L —wpg, then a € R — wpg and there exists b € R such that 1 €a-bC R-a C L
(since R is a s-H,-ring, every w-ideal is an H,-ideal and so R-a C L), so L = R.
Therefore, R and wg are only w-ideals of R. (]

Example 3.17. FEvery H,-field is a s-H,-ring. The H,-ring R in the Example
3.14 is not s-H,-ring.

4. H,-QUOTIENT RING

In this section, we build the quotient H,-ring by using v*, the fundamental
relation of ring.

Theorem 4.1. Let (R, +,-) be a commutative H,-ring and I be an H,-ideal of R.

Define the hyperoperations + and x on R/I = {r+I| r € R} as the following:
(r+D)+0 +1) ={z+Ilzeryr+r +D}=y(+r +1)+1,
(r+D)x(r+I) ={a+Ilzey*((r-r)+D}=7*0r-r +1)+1.

then (R/I,+, %) is an H,-ring, this is called H,-quotient ring R on I.

Proof. We show that “ x 7 is a well defined hyperoperation. First note that
V(rire) @y (1) ={y"(r1-r2) &y ()] i € I}
={y*(r1-ro+10)|ie€l}
=v"(r1-re +1).
Suppose 1 + 1 =1 + I and 7o + I = ry + I then v*(r;) ® v*(I) = v*(r;) ® v*(I)

for i = 1,2 and they are elements of ordinary quotient ring 5*/ &). Thus

(ri4+1)x (ro+1) = (r; +1) x (ry + I).
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One can similarly investigate the other axioms in order to R/I is an H,-ring. O

Proposition 4.2. If I and J are H,-ideals of the Hy,-ring R and v*(J) C I, then

I - R
7 1s an H,-ideal of 7.

I
Proof. If i1,i9 € I, then (i1 +J) + (i +J) ={z+ 1|z € v (i1 +i2+ J)} C 7

Let z+ Jy+ J € § by the reproduction axiom for I, there exists z € I such that
zey+z,s0x+J€(y+J)+(2+J). Now for every r+J € & and i+ J € £ we
have (r+J) x (i+J) ={z+J| x € y*((r-i)+ J)} C L, since I is an H,—ideal.

Similarly (i +J) x (r+J) C § Therefore § is an H,-ideal of %. O

Definition and Lemma 4.3. [1] An H,-ideal I is called an H,-isolated ideal if it
satisfies the following axiom:

Forall X CI, Y CSif (M,N) € |X,Y]|, then M C I.
For H,-isolated ideal I of R, S™*I = {[a,s|| a € I,s € S} is an H,-ideal of ST'R.

1

So, if I is an H,-isolated ideal of R, then ‘Z_,—III% is an H,-ring. Now by the
following Lemma, we build a commutative diagram that relate the H,-quotient
rings and the H,-ring of fractions.

It is straightforward to see that every element of U, is of the form ~v*(u; +
I)+ 1 for u; € U. So every expression of finite hyperoperations applied on finite
subsets of R/I is equal to v*(u + I) + I for some u € U.

Lemma 4.4. If v* and v} are the fundamental relations of H,-rings R and R/I
respectively, then vi(r1 + 1) =~ (ra + 1) if and only if v*(r1 +1) =~*(ro + I).

Proof. For some 11,72 € R, suppose v;j(r1 + I) = ~j(r2 + I) then there exist
Uy, Uz, - , Uy, € U and 21,22, -+ ,Tpymy1 € R such that

i+l =r+I zppn+I=r2+1,
{zi+ L1 +1} Cus+ITfori=1,2,---,m.
Thus
Y(@1) &y (L) =77 (r) &7 ), ¥ (@ms1) BV (1) =" (r2) Y1),
V(@) @7 ()" (i) @77 (D)} € 7" (wi + 1) ®77(1) for u; € U.
Let for i = 1,2,---,m, u; € > "“[rix-Tik; - 2. " uij] where u;; € R, j =
1,2,--- ,jk, kK =1,2,--- ,n;. Note that in this combination for u; the order of

hyperoperation omitted because this order is not important in v*(u;). Now by
properties of fundamental relation, we have

VY (ui) = @™ [y (riy,) © - © 7 (rir,) © (@77 (uj))] = v*(t:) for every t; € u.
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Since v*(I) is an ideal of v*(R) then v*(a;)+v*(I), v*(u;)®~*(I) and v*(t;)+v* (1)
are cosets of y*(I) in R/v*, thus

V(@) @ (1) =y (i) @7 (1) =" (t:) &y" (1) for i = 1,2,--- ,m.

Therefore v*(r1) & v*(I) = v*(r2) @ v*(I).

Conversely, if v*(r1) @ v*(I) = v*(r2) ®v*(I) then v*(ry + I) = v*(ro + I).
So for every s1 € r1 + I there exists s € ro + I such that v*(s1) = v*(s2). Thus
there exist 1,9, -+ ,Tm+1 € I, uy, uo,--- ,uy, € U such that z; = 51, 41 = s2
and {z;,x;41} C w; for i = 1,2,--- ;m. Thus z1 +1 = s;1+ 1, ¢ppy1 + 1 =
so+ I, {x; + 1,541 +1} Cu;+ 1 fori=1,2---,m. By definition of v}, we
conclude that 77 (s1 + 1) =77 (s2 + I) and so vj(r1 + 1) = vj(r2 + I). O

Theorem 4.5. Let I be an H,-isolated ideal of R. Then the following diagram of
H,-homomorphisms and H,-rings are commutative.

A

hy

£y

R VLSJ % ils
SR _|Fs y STUR /gx
h vz " T ST/
o
71 fs S* R
STR 511

Proof. We prove that the left, up and front faces diagrams of cube are commutative
diagrams of H,-homomorphisms and H,-rings. The left face diagram is the diagram
in Theorem 2.2. For front face diagram we define the mappings in the diagram as
the following; f by f(r) =r+1, h by h(r) = [r,1], h by h(r + I) = [r,1] + S7I
and fs by fs([r,s]) = [r,s] + S7'I. By the proof of Theorem 2.2, h is an H,-
homomorphisms. It is easy to see that f and f; are H,-homomorphisms. Now we
have

M+ D+ (r+ D) =h({z+1| 2 €9 (r+72+D)})
={[z, 1]+ S |z ey (r+r2+ 1)},
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and

h(ri + 1)+ h(ro +1) =[r;,1]+S™ + [r, 1]+ S~
z, 8]+ STH| [z, s] € v5([r1, 1] 4 [r2, 1] + 571}
X

[r
{
{l.5+ 87| [z, 5] € 95([r, 1] + 571D,
res(r + rg)}.

By setting x =r € 71 + 72 and s = 1 we have
[r,8] + ST € h((ry + 1)+ (ro + 1)) N (h(ry + I) + h(ry + 1)) # 0.
Similarly we obtain h((rq +1) x (r2 4+ 1)) N (h(rq +I) x h(ra + 1)) # (. Finally, for
commutativity, for every r € R we have:

h(f(r)) =h(r+1)=[r,1]+S7'I,
Fs(h(r)) = fo(lr,1]) = [r, 1] + 71,

In the up face diagram; ¢ and ¢ are the canonical strong homomorphisms of
R and R/I related to fundamental ring R/v* and £ /7, respectively. Define f by
f(y*(r)) =~5(r+1I). For r1,r2 € R, we have:

V() =7"(r2) = () +77 (1) =" (r2) +77(I)
= Y(ri+1)=7"(r2 +1)
= ~j(r+1I)=~7(ra+ 1), by Lemma 4.4.
Therefore, f is well defined. Also

FO () +97(r2)) *(r1+72))

*(t)) =~ (t + 1), for some t € r1 + 7. (1)

i h
—

v
~y
On the other hand
FOr )+ f(y7(r2)) = A+ 1) + 95 (r2 + 1)
= ~j(t+ 1), for some t € v*(ry +ro + I). (2)
Since 71 + 12 C ¥*(r1 +72) C ¥*(r1 + r2 + I), the statements in (1) and (2) are
equal and f is a strong homomorphism. Also ¢(f(r)) = @(r + 1) = v;(r +I) and
flo(r)) = f(y(r)) =i (r + 1)
The diagram in other faces get from discussed diagrams by replacing R/I,

STIR, ST, %, v}, instead of R, R, I,~*, 7}, respectively and so these diagrams
are commutative diagrams of H,-homomorphisms and H,-rings. O

Theorem 4.6. Let I and J be H,-ideals of H,-rings R such that I C L C R then
(i) L/T is a w-ideal of R/I,

:s x( LY ~ Y (L)
(ii) 77 (7) = :Y,T
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Proof. (i) We know £ = {I+1| 1 € L}, vj(%) = {v;(l+ )| |l € L}. Suppose
lh+1,l,+1€ % andr+1 € %We show that

L
Jand y7(r+ 1) @~;(l +1) € vi(+

* * * L
i+ 1) @vi(la+1) €vi(~ I)’

For t € v*(Iy + I3 + I) we have !
V) e (h+la+ 1) ="l + L) &~y (1),

and

Y+ =~y t)ey ) ="l +l) @y ) =7"(1) vy (), wherel €l + 5.

Thus for every t € v*(I1 +lo+ 1) and | € I + a:

YD) = U+,
vit+I) = ~7(l+1I), by Lemma 4.4.
Therefore
villi+I) @ vila+ 1) vi(t+ 1), for somet ey (Iy +1la+ 1)
= ~7(l+1), for somel cly +l2

L
€ 71(7)~

And by similar argument, we conclude:

* * * L
yilr+I) @y +1) € 71(7)~

(ii) Define 6 : 71( ) — 7 (L) by 0(~;(l +I)) ¥*(I) ®v*(I). By Lemma 4.4, 6 is
an one to one mapping. Let l1 +1,l5+ 1€ L wehave
0O+ 1) &l +1)) =007l +I) (I2 +1)])
=00yl (h+la+ 1)+ 1))

[v
=0(vi(x+ 1)), for some x € v*(Iy + 1o+ I)
v (z) ®y*(I), for some x € v*(ly +1+I)

*(l + lz) ®v* (1)
(h) ©77(l2))

7
(v (1)

= (v*(ll) ®y*(I))
=0(y* )@

(7(*(52) (1))

And so
O(vi(r+ ) @il +1)) =0(vi((r+1)x (L +1))
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Corollary 4.7. Let I and J are H,-ideals of an H,-ring R and I C J, then

(i) R/I ~ 7" (R)
i AON
(i) wr =7 (1) +1,

(iii) W = WR.

Proof. (i) is immediate corollary of Theorem 4.6.

R/I — : ((R)) similar to Theorem 4.6 (ii), then

(ii) Consider the isomorphism 6 :
by (i)
wryr = A{r+1]6(yi(r+1)) =~"(I)}
={r+Iy(r)ey )=~}
=~*(I)+1.
(iii) By using the proof of (ii) we have w r = y*(wgr) + wg = wr + wg =wgr. O
YR

Proposition 4.8. Let M be a maximal H,-ideal of an s-H,-ring R then v*(M) is
a mazimal ideal of R/v*.

Proof. We prove that v*(M) @ R/v* ® X = R/~* for every X € R/~v* — ~v*(M).
Suppose for some z € R, v*(z) = X € R/v* —~v*(M), so x ¢ M. But v*(M +
R-x)=~*(M)® R/y* ® v*(x) is an ideal of R/y* and M + R - z is a w-ideal of
Rso M+ R-xis an H,-ideal of R. Therefore, M + R-x = R and v*(M) + R/
v ® X =v*(R). t

Theorem 4.9. (First homomorphism theorem) Let f : R — S be a strong
homomorphism of H,-rings and I = ker f, then o : R/I — S/wg where p(r+1) =
fr) +ws is an H,-homomorphism of H,-rings.

Proof. For ry + I, ro +1 € R/I;

nt+l=ra+I = f(r)+f(I)+ws=f(r2) +f(I) +ws
= f(r1) +ws = f(r2) + wg, since f(I) C wg.

So ¢ is well defined.
For ty € r1 + ry we have:

f(to) € f(r1+12) Sy (f(r1+712)) Bws =7 (f(r1 +12) +ws), (3)
to € 7" (to) € v (to) ® 7y (I) =" (r1 +12) @7 () =" (r1 +r2 +1).  (4)
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Also
olri+D+(re+1) = ey (r1+re+1)+1)
= {fO)+ws|tery (rn+r+ 1)},
p(ri+ 1) +o(ra+1) = (f(r)+ws)+ (f(r2) +ws)

= Y ((f(r1) + f(r2) + ws) +ws)
= Y (f(r1+72) +ws) +ws
= {sHws|se~v"(f(ri+r2) +ws)}.
Then by (3) and (4), for tg € r1 + 72,
fto) +ws € @((r1 + 1) + (r2 + 1)) N (0(r1 + 1) + (72 + 1)),

For ug € r1 - ro9, we have

f(uo) € f(r1-12) S (f(r1-12)) Bws =" (f(r1 - r2) +ws), (5)
ug € 7" (uo) € Y (wo) ® Y (I) =" (r1-1m2) ©7"(I) =" (r1 -2 +1).  (6)
e((ri+1)-(ra+1)) = @ (r1-r2+1)+1)

= {f@t)+ws|tey (ri-re+1)},

p(ri+1)-pra+ 1) = {s +ws| s €y (f(r1-r2) + ws)}-
Therefore, by (5) and (6), f(uo) +ws € p((r1+1)-(re+1))N(p(r1+1)-p(ra+1)),

and ¢ is an H,-homomorphism of H,-rings. (I
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