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Abstract. We show that if two meromorphic functions on the complex plane shar-

ing some three-point sets IM, then they are indentical under some conditions.
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1. INTRODUCTION AND THE MAIN RESULTS

For nonconstant meromorphic functions f and g on C and a finite set S
in C = C ∪ {∞}, we say that f and g share S CM (counting multiplicities) if
f−1(S) = g−1(S) and if for each z0 ∈ f−1(S) two functions f − f(z0) and g− g(z0)
have the same multiplicity of zero at z0, where the notations f − ∞ and g − ∞
mean 1/f and 1/g, respectively. Also, if f−1(S) = g−1(S), then we say that f and
g share S IM (ignoring multiplicities). In particular if S is a one-point set {a}, then
we say also that f and g share a CM or IM. The notion of meromorphic functions
sharing sets is introduced by Gross in [1].

In [4] and [5], R. Nevanlinna showed the following two theorems:

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic functions
on C and let a1, · · · , a4 be four distinct points in C. If f and g share a1, · · · , a4

CM, then f is a Möbius transform of g, i.e. f = (ag+ b)/(cg+d) for some complex
numbers a, b, c, d with ad− bc 6= 0, and there exists a permutation σ of {1, 2, 3, 4}
such that aσ(3), aσ(4) are Picard exceptional values of f and g and the cross ratio
(aσ(1), aσ(2), aσ(3), aσ(4)) = −1.
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Theorem 1.2. Let f and g be two nonconstant meromorphic functions on C
sharing five distinct points in C IM, then f = g.

Since Nevanlinna, many researchers have been studying various versions of
uniquness theorem of meromorphic functions sharing finite sets CM or IM (see, e.g.,
[7], [8], [11] and [12]). In particular, the second author researched meromorphic
functions sharing four two-point sets CM, and also he gave the following result in
[9]

Theorem 1.3. Let S1, · · · , S5 be pairwise disjoint one-point or two-point sets in
C. If two nonconstant meromorphic functions f and g on C share S1, · · · , S5 IM,
then f is a Möbius transform of g.

Remark. Let T be the Möbius transformation of the conclusion in Theorem
1.3. By the proof of Theorem 1.3, we see that T is of order 2, i.e., T 2 = T ◦ T is
the identity if T is not the identity.

Since any Möbius transformation except the indentity has at most two fixed
points and any nonconstant meromorphic function has at most two exceptional
values, we have, as a corollary of Theorem 1.3,

Corollary 1.4. Let S1, · · · , S5 be pairwise disjoint one-point or two-point sets in
C. Assume that there is no Möbius transformation T except the identity with at
most two points z in C satisifying one of the following conditions: (i) z ∈ Sj and

T (z) 6∈ Sj for some j = 1, · · · , 5; (ii) z 6∈ ∪5
j=1Sj and T (z) ∈ ∪5

j=1Sj . Then two
nonconstant meromorphic functions on C sharing S1, · · · , S5 IM are identical.

In particular, in the case of five two-point sets we see

Theorem 1.5. Let S1, · · · , S5 be pairwise disjoint two-point sets in C. Assume
that there is no Möbius transformation which interchanges two elements of Sj
for distinct three j. Then, two nonconstant meromorphic functions on C sharing
S1, · · · , S5 IM are identical.

We assume that S1, S2, S3 be pairwise disjoint two-point sets in C. Let
Sj = {ξj , ηj} and let Pj(z) = z2 +ajz+bj , where aj = −(ξj+ηj), bj = ξjηj . We see
that the following three conditions are equivalent: (i) there exists a Möbius trans-

formation which interchanges ξj and ηj for j = 1, 2, 3; (ii)

∣∣∣∣∣∣
1 ξ1 + η1 ξ1η1

1 ξ2 + η2 ξ2η2

1 ξ3 + η3 ξ3η3

∣∣∣∣∣∣ = 0;

(iii) P1, P2, P3 are linearly dependent over C (see Lemma 3.2 in [6]).
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For a finite set S in C, we define its defining polynomial P as a polynomial
without multiple zeros satisfying S = {z ∈ C : P (z) = 0}, then P is called a
defining polynomial of S. Therefore, we can restate Theorem 1.5 as follows:

Theorem 1.6. Let S1, · · · , S5 be pairwise disjoint two-point sets in C and let Pj
be a defining polynomial of Sj . If any three of P1, · · · , P5 are linearly independent
over C, then two nonconstant meromorphic functions on C sharing S1, · · · , S5 IM
are identical.

In this paper, we consider the uniqueness of meromorphic functions sharing
three-point sets and one-point sets IM. The above condition (i) is geometrical, but
it is hard to treat it in our problem. Therefore we adapt the condition (iii) to our
problem, and about the uniqueness of meromorphic functions sharing three-point
sets IM, we show

Theorem 1.7. Let S1, · · · , S5 be pairwise disjoint three-point sets in C and let Pj
be a defining polynomial of Sj . If any three of P1, · · · , P5 are linearly independent
over C, then two nonconstant meromorphic functions on C sharing S1, · · · , S5 IM
are identical.

We assume that the reader is familiar with the standard notations and results
of the value distribution theory (see, for example, [2]). In particular, we express
by S(r, f) quantities such that lim

r→∞,r 6∈E
S(r, f)/T (r, f) = 0, where E is a subset of

(0,∞) with finite linear measure and it is variable in each case.

2. PROOF OF THEOREM 1.7

First, for general polynomials we show the following lemma.

Lemma 2.1. Let P1, P2, P3 be three polynomials of degree d, where d is a positive
integer. Assume that Pj has no multiple zeros and that Pj and Pk have no common
zeros for distinct j and k in {1, 2, 3}. Moreover, assume that P1, P2, P3 are linearly
independent over C. Then not all of P1(ξj)/P2(ξj) (j = 1, · · · , d) are the same,
where ξ1, · · · , ξd are the zeros of P3.

Proof. On the contrary, we assume that all of of P1(ξj)/P2(ξj) (j = 1, · · · , d)
are the same value λ:

P1(ξj)− λP2(ξj) = 0 (j = 1, · · · , d).

Put Q(z) = P1(z)− λP2(z), then Q has zeros ξ1, · · · , ξd, and hence it is a nonzero
complex multiple of P3. This implies that P1, P2, P3 are linearly dependent over C,
and hence, we have finished the proof. �
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We introduce the following Borel’s Lemma, whose proof can be found, for
example, on p.186 of [3].

Lemma 2.2. If entire functions α0, α1, . . . , αn without zeros satisfy

α0 + α1 + · · ·+ αn = 0,

then for each j = 0, 1, · · · , n there exists some k 6= j such that αj/αk is constant.

For the proof of Theorem 1.7 we need the following result in [10]

Theorem 2.3. Let p be a non-negative integer and let q be an integer not less
than 2. Let S1, · · · , Sp be one-point sets in C and let Sp+1, · · · , Sp+q be d-point
sets in C, where d is an integer not less than 2. Assume that S1, · · · , Sp+q are
pairwise disjoint and that p + q ≥ 5. If two distinct nonconstant meromorphic
functions f and g on C share S1, · · · , Sp+q IM, then there exists distinct j1, j2 in
{p+ 1, · · · , p+ q} such that Pj1(f)/Pj2(f) = Pj1(g)/Pj2(g), where Pj are defining
polynomials of Sj .

Proof. We may assume that p ≤ 4 by Theorem 1.2.

By the second main theorem and the first main theorem we have

(p+ dq − 2)T (r, f) ≤
p+q∑
j=1

∑
ξ∈Sj

N(r,
1

f − ξ
) + S(r, f)

=

p+q∑
j=1

∑
ξ∈Sj

N(r,
1

g − ξ
) + S(r, f) ≤ (p+ dq)T (r, g) + S(r, f) (1)

and, by the same way,

(p+ dq − 2)T (r, g) ≤ (p+ dq)T (r, f) + S(r, g). (2)

Hence, by (1) and (2), there is no need to distinguish S(r, f) and S(r, g), and so
we denote them by S(r).

By NE(r,
1

f − ξ
) and NN (r,

1

f − ξ
) we denote the counting functions which

count the point z such that f(z) = ξ = g(z) and f(z) = ξ 6= g(z) counted once,

respectively, and we define NE(r,
1

g − ξ
) and NN (r,

1

g − ξ
) by the same way. It is

easy to see that NN (r,
1

f − ξ
) = NN (r,

1

g − ξ
) = 0 for ξ ∈ S1 ∪ · · · ∪ Sp and that∑

ξ∈Sj

NE(r,
1

f − ξ
) =

∑
ξ∈Sj

NE(r,
1

g − ξ
),

∑
ξ∈Sj

NN (r,
1

f − ξ
) =

∑
ξ∈Sj

NN (r,
1

g − ξ
) (3)
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for j = p+ 1, · · · , q. Since f − g 6≡ 0, we have

p+q∑
j=1

∑
ξ∈Sj

NE(r,
1

f − ξ
) ≤ N(r,

1

f − g
) ≤ T (r, f) + T (r, g) +O(1),

and hence
p+q∑
j=p+1

∑
ξ∈Sj

NN (r,
1

f − ξ
) =

p+q∑
j=1

∑
ξ∈Sj

N(r,
1

f − ξ
)−

p+q∑
j=1

∑
ξ∈Sj

NE(r,
1

f − ξ
)

≥ (p+ dq − 2)T (r, f)− T (r, f)− T (r, g) + S(r)

= (p+ dq − 3)T (r, f)− T (r, g) + S(r)

by using (1). By the same way and (3) we have

p+q∑
j=p+1

∑
ξ∈Sj

NN (r,
1

f − ξ
) ≥ (p+ dq − 3)T (r, g)− T (r, f) + S(r).

Adding these two inequalities we obtain

p+q∑
j=p+1

∑
ξ∈Sj

NN (r,
1

f − ξ
) ≥ 1

2
(p+ dq − 4)(T (r, f) + T (r, g)) + S(r). (4)

Note that q ≥ 2. From (4) we see that there exist distinct j1 and j2 in
{p+ 1, · · · , q} and a subset I of (0,+∞) of infinite linear measure such that

1

q
(p+ dq − 4)(T (r, f) + T (r, g)) + S(r) ≤

∑
ξ∈Sj1

∪Sj2

NN (r,
1

f − ξ
) (5)

holds for r ∈ I. Put Q(z, w) = (Pj1(z)Pj2(w) − Pj1(w)Pj2(z))/(z − w) and Φ =
Q(f, g). Assume that Φ 6≡ 0. If f(z), g(z) ∈ Sj1 ∪ Sj2 and f(z) 6= g(z), then
Φ(z) = 0. Therefore we have∑

ξ∈Sj1
∪Sj2

NN (r,
1

f − ξ
) ≤ N0(r,

1

Φ
) (6)

holds for r ∈ I, where N0(r, 1
Φ ) denotes the counting functions corresponding to

the zeros of Φ that are not the poles of f and g. We see that Q(z, w) is a symmetric
polynomial of z and w and it has degree at most d−1 with respect to each of z and
w. By using the first fundamental theorem and the definition of countiong function
and that of proximity function, we have

N0(r,
1

Φ
) ≤ N(r,Q(f, g)) +m(r,Q(f, g))

≤ (d− 1)(N(r, f) +N(r, g) +m(r, f) +m(r, g)) +O(1)

= (d− 1)(T (r, f) + T (r, g)) +O(1).

By connecting (5), (6) and this,

1

q
(p+ dq − 4)(T (r, f) + T (r, g)) + S(r) ≤ (d− 1)(T (r, f) + T (r, g)) +O(1)
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holds for r ∈ I. Here I may be different from that in (5). We obtain p+ dq − 4 ≤
q(d−1), which contradicts hypothesis p+q ≥ 5. Therefore we conclude that Φ ≡ 0,
which induces that Pj2(f)/Pj1(f) = Pj2(g)/Pj1(g). We have completed the proof.

�

Now, we start the proof of Theorem 1.7. By Theorem 2.3, we may assume
that P1(f)/P2(f) = P1(g)/P2(g) by rearranging indices if necessary.

Remark. Let P1, · · · , Pq be polynomials of degree d, where q and d are integers
such that q ≥ 3, d ≥ 2. Assume that each of P1, · · · , Pq has no multiple zeros
and that any two of them have no common zeros. Moreover, we assume that
P1(f)/P2(f) = P1(g)/P2(g) for nonconstant meromorphic functions f and g on
C and that f and g share S3, · · · , Sq IM. If for each j = 3, · · · , q the d values
P1(ξjk)/P2(ξjk) (k = 1, · · · , d) are distinct for each zero ξjk of Pj , then f and
g share ξjk IM. In this case, by Theorem 1.2, we see that f = g if d(q − 2) ≥ 5.
However, the hypothesis that for each j = 3, · · · , q the d values P1(ξjk)/P2(ξjk) (k =
1, · · · , d) are distinct is too strong, and we seek another condition about Pj for the
uniqueness of meromorphic functions.

Again, we return to the proof. Let Sj = {ξj , ηj , ζj}. For ξ, η ∈ C, we
put E(ξ, η) = {z ∈ C : (f(z), g(z)) = (ξ, η) or (η, ξ)}. We separate S3, S4, S5

into two types: (A) some of E(ξj , ηj), E(ξj , ζj), E(ηj , ζj) are not empty; (B) all of
E(ξj , ηj), E(ξj , ζj), E(ηj , ζj) are empty. Then we consider three cases: (I) at least
two of S3, S4, S5 are of type (B); (II) one of S3, S4, S5 is of type (B) and the others
are of type (A); (III) all of S3, S4, S5 are of type (A).

The case (I). At least two of S3, S4, S5 are of type (B). We may assume that
S4, S5 are of type (B). Then f and g share ξj , ηj , ζj IM for j = 4, 5. By Theorem
1.2, we get f = g.

The case (II). One of S3, S4, S5 is of type (B) and the others are of type
(A). We may assume that S3 is of type (B) and S4 and S5 are of type (A). More-
over, we may assume that E(ξj , ηj) 6= ∅ for j = 4, 5. Then, for j = 4, 5, we
have P1(ξj)/P2(ξj) = P1(ηj)/P2(ηj), and by assumption and Lemma 2.1 we have
E(ξj , ζj) = E(ηj , ζj) = ∅, which implies that f and g share {ξj , ηj} and {ζj} IM.
Since f and g share also ξ3, η3, ζ3 IM, by using Theorem 1.2, we get f = g.

The case (III). All of S3, S4, S5 are of type (A). We may assume that E(ξj , ηj)
6= ∅ for j = 3, 4, 5. Then, for j = 3, 4, 5, we have P1(ξj)/P2(ξj) = P1(ηj)/P2(ηj),
and by assumption and Lemma 2.1 we have E(ξj , ζj) = E(ηj , ζj) = ∅, which
implies that f and g share {ξj , ηj} and {ζj} IM. By using Theorem 1.3, there exists
a Möbius transformation T such that f = T ◦ g.

Assume that f 6≡ g, and hence T is not the identity. Then T has at most
two fixed points, and hence, we may assume that E(ζ5, ζ5) = ∅. In this case, ζ5
is an exceptioanl value of f and g. Furthermore, T interchanges ξj and ηj for at
least one of j ∈ {3, 4, 5}, which are also fixed points of T 2 = T ◦ T . Since the fixed
points of T are also those of T 2, it has at least three fixed points. Therefore, T 2 is
the identity. This result follows also from Remark of Theorem 1.3.
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(i) The case where E(ζ4, ζ4) = ∅ or E(ζ3, ζ3) = ∅. It is enough to consider
the case where E(ζ4, ζ4) = ∅. In this case ζ4 and ζ5 are exceptional value of f
and g and they have no more exceptional values. Therefore E(ζ3, ζ3) 6= ∅, and
hence ζ3 is a fixed point T . Since T has at most two fixed points we may assume
that all E(ξ1, ξ1), E(η1, η1), E(ζ1, ζ1) are empty. Furthermore, we may assume that
E(ξ1, η1) 6= ∅ since f−1(S1) 6= ∅. Then T (ξ1) = η1 and T (η1) = ξ1. Since T is
a one-to-one mapping of C onto C, E(ξ1, ζ1) = ∅, E(η1, ζ1) = ∅. However, this
implies that ζ1 is an exceptional value of f and g, which is a contradiction.

(ii) The case where E(ζ3, ζ3) 6= ∅ and E(ζ4, ζ4) 6= ∅. In this case ζ3 and ζ4
are fixed points of T , and it has no more fixed points, in particular, E(ξj , ξj) =
E(ηj , ηj) = E(ζj , ζj) = ∅ for j = 1, 2. Since f and g have an exceptional value ζ5,
we may assume that they have no exceptional value in S1. Hence we may assume
that E(ξ1, η1) 6= ∅, and we can get a contradiction as in the case (i).

After all, we have f = g, and the proof is completed.

3. MEROMORPHIC FUNCTIONS SHARING TWO THREE-POINT
SETS AND THREE VALUES IM

Let f and g be two meromorphic functions on C sharing S1, · · · , S5 IM,
where S1, S2 are three-point sets in C and S3, S4, S5 are one-point sets in C, and
S1, · · · , S5 are pairwise disjoint. Suppose that f 6≡ g. Then, by using Theorem 2.3,
we have P1(f)/P2(f) = P1(g)/P2(g), where Pj(z) = z3 +ajz

2 + bjz+ cj is defining
polynoimal of Sj for j = 1, 2, and hence

(a2 − a1)f2g2 + (b2 − b1)fg(f + g) + (c2 − c1)(f2 + fg + g2)

+ (a1b2 − a2b1)fg + (a1c2 − a2c1)(f + g) + (b1c2 − b2c1) = 0. (7)

Let Sj = {ξj} for j = 3, 4, 5. Now, assume that

(a2 − a1)ξj
4 + 2(b2 − b1)ξj

3 + 3(c2 − c1)ξj
2

+ (a1b2 − a2b1)ξj
2 + 2(a1c2 − a2c1)ξj + (b1c2 − b2c1) 6= 0, (8)

for j = 4, 5. Then ξ4, ξ5 are exceptional values of f and g, and hence there exist
entire functions α, β without zeros such that

f − ξ4
f − ξ5

= α,
g − ξ4
g − ξ5

= β.

From these we get

f =
ξ4 − ξ5α

1− α
, g =

ξ4 − ξ5β
1− β

.

By substituting these into (7), we obtain∑
0≤j,k≤2

Ajkα
jβk = 0,
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where Ajk are constants and, in particular, A00 = P (ξ4, ξ4) 6= 0 and A22 =
P (ξ5, ξ5) 6= 0. Here,

P (z, w) = (a2 − a1)z2w2 + (b2 − b1)zw(z + w) + (c2 − c1)(z2 + zw + w2)

+ (a1b2 − a2b1)zw + (a1c2 − a2c1)(z + w) + (b1c2 − b2c1).

Since f and g are not constant, neither α nor β is constant. By applying Lemma
2.2 to this equation, we can induce that one of αβ, α2β and αβ2 is constant.

If α2β is constant, then( f − ξ4
f − ξ5

)2

= c0
g − ξ5
g − ξ4

,

where c0 is a nonzero constant, and it follows from this that T (r, g) = 2T (r, f) +
S(r, f). On the other hand, by assumption, we have

4T (r, g) ≤
∑
j=1,2

{N(r, 1/(g − ξj)) +N(r, 1/(g − ηj)) +N(r, 1/(g − ζj))}+ S(r, g)

=
∑
j=1,2

{N(r, 1/(f − ξj)) +N(r, 1/(f − ηj)) +N(r, 1/(f − ζj))}+ S(r, g)

≤ 6T (r, f) + S(r, g)

by the second fundamental theorem. However, these are not compatible. Hence
α2β is not constant, and similary neither is αβ2.

Therefore αβ is a constant, i.e.,

f − ξ4
f − ξ5

· g − ξ4
g − ξ5

= c0,

where c0 is a nonzero constant. This induces that there is a relation f = T (g),
where T is a Möbius transformation interchanging ξ4 and ξ5 and it is of order 2.

Since f and g have two exceptional values ξ4 and ξ5, they have no more
exceptional values, and hence ξ3 is a fixed point of T . Since Möbius transformation
T has at most one fixed point in S1 ∪S2, we may assume that it has no fixed point
in S1, and hence E(ξ1, ξ1) = E(η1, η1) = E(ζ1, ζ1) = ∅. If E(ξ1, η1) 6= ∅, then η1 =
T (ξ1). Since T is one-to-one and of order 2, we see that E(ξ1, ζ1) = E(η1, ζ1) = ∅.
Therefore ζ1 is an exceptional value of f and g, which is a contradiction. By the
same way, we can get a contradiction in the case that E(ξ1, ζ1) 6= ∅. However, these
imply another contradction that ξ1 is an exceptional value of f and g. Hence, we
conclude that f = g.

Theorem 3.1. Let S1, · · · , S5 be pairwise disjoint sets in C with ]S1 = ]S2 = 3
and ]S3 = ]S4 = ]S5 = 1. Let Pj(z) = z3 + ajz

2 + bjz + cj be defining polynomial
of Sj for j = 1, 2 and let Sj = {ξj} for j = 3, 4, 5. If (8) holds for at least two j in
{3, 4, 5}, then two nonconstant meromorphic functions on C sharing S1, · · · , S5 IM
are identical.
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4. MEROMORPHIC FUNCTIONS SHARING THREE THREE-POINT
SETS AND TWO VALUES IM

Let f and g be two meromorphic functions on C sharing S1, · · · , S5 IM, where
S1, S2, S3 are three-point sets in C and S4, S5 are one-point sets in C, and S1, · · · , S5

are pairwise disjoint. Suppose that f 6≡ g. Then, by using Theorem 2.3, we may
assume that P1(f)/P2(f) = P1(g)/P2(g), where Pj(z) = z3 + ajz

2 + bjz + cj is
defining polynoimal of Sj for j = 1, 2, 3, and hence we have (7). Let Sj = {ξj} for
j = 4, 5. If we suppose that

(al − ak)ξj
4 + 2(bl − bk)ξj

3 + 3(cl − ck)ξj
2

+ (akbl − albk)ξj
2 + 2(akcl − alck)ξj + (bkcl − blck) 6= 0, (9)

holds for j = 4, 5 and distinct k, l in {1, 2, 3}, then ξ4, ξ5 are exceptional values of
f and g, and hence, as in the §3, we can obtain a relation f = T (g), where T is a
Möbius transformation interchanging ξ4 and ξ5 and it is of order 2.

Since T has at most two fixed points, we may assume that there is no fixed
point in S1. Again, by the same way in §3, we can get a contradiction, and we
obatain the following theorem:

Theorem 4.1. Let S1, · · · , S5 be pairwise disjoint sets in C with ]S1 = ]S2 =
]S3 = 3 and ]S4 = ]S5 = 1. Let Pj(z) = z3 +ajz

2 +bjz+cj be defining polynomial
of Sj for j = 1, 2, 3 and let Sj = {ξj} for j = 4, 5. Assume that (9) holds for distinct
k, l in {1, 2, 3} and j = 4, 5. Then, two nonconstant meromorphic functions on C
sharing S1, · · · , S5 IM are identical.

5. MEROMORPHIC FUNCTIONS SHARING FOUR THREE-POINT
SETS AND A VALUE IM

Let f and g be two meromorphic functions on C sharing S1, · · · , S5 IM, where
S1, S2, S3, S4 are three-point sets in C and S5 is a one-point set in C, and S1, · · · , S5

are pairwise disjoint. Suppose that f 6≡ g. Let Pj(z) = z3 + ajz
2 + bjz + cj be

defining polynomial of Sj for j = 1, 2, 3, 4. Then, by using Theorem 2.3, we may
assume that P1(f)/P2(f) = P1(g)/P2(g), , and hence we have (7). Let S5 = {ξ5}.
If we suppose that

(ak − aj)ξ54 + 2(bk − bj)ξ53 + 3(ck − cj)ξ52

+ (ajbk − akbj)ξ52 + 2(ajck − akcj)ξ5 + (bjck − bkcj) 6= 0, (10)

for distinct j, k in {1, 2, 3, 4}, then ξ5 is an exceptional values of f and g.

Let Sj = {ξj , ηj , ζj} for j = 3, 4. We separate S3, S4 into two types: (A)
some of E(ξj , ηj), E(ξj , ζj), E(ηj , ζj) are not empty; (B) all of E(ξj , ηj), E(ξj , ζj),
E(ηj , ζj) are empty. Then we consider three cases: (I) both of S3 and S4 are of
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type (B); (II) one of S3 and S4 is of type (B) and the other is of type (A); (III)
both of S3 and S4 are of type (A).

The case (I). Both of S3 and S4 are of type (B). Then f and g share ξj , ηj , ζj
IM for j = 3, 4. By Theorem 1.2, we get f = g.

The case (II). One of S3 and S4 is of type (B) and the other is of type (A).
We may assume that S3 is of type (B) and S4 is of type (A). Moreover, we may
assume that E(ξ4, η4) 6= ∅. Then, we have P1(ξ4)/P2(ξ4) = P1(η4)/P2(η4), and by
assumption and Lemma 2.1 we have E(ξ4, ζ4) = E(η4, ζ4) = ∅, which implies that
f and g share {ξ4, η4} and {ζ4} IM. Since f and g share also ξ3, η3, ζ3 and ξ5 IM,
by using Theorem 1.2, we get f = g.

The case (III). Both of S3 and S4 are of type (A). We may assume that
E(ξj , ηj) 6= ∅ for j = 3, 4. Then, we have P1(ξj)/P2(ξj) = P1(ηj)/P2(ηj), and by
assumption and Lemma 2.1 we have E(ξj , ζj) = E(ηj , ζj) = ∅, which implies that
f and g share {ξj , ηj} and {ζj} IM for j = 3, 4. By using Theorem 1.3, there exists
a Möbius transformation T such that f = T ◦ g.

Assume that f 6= g, and hence T is not the identity. Then T has at most two
fixed points, and hence, we may assume that E(ξ5, ξ5) = ∅. In this case, ξ5 is an
exceptional value of f and g. Furthermore, T interchanges ξj and ηj for at least
one of j ∈ {3, 4}, which are also fixed points of T 2 = T ◦ T . Since the fixed points
of T are also those of T 2, T 2 has at least three fixed points. Therefore, T 2 is the
identity, as mentioned in Remark of Theorem 1.3.

(i) The case where E(ζ4, ζ4) = ∅ or E(ζ3, ζ3) = ∅. It is enough to consider
the case where E(ζ4, ζ4) = ∅. In this case ζ4 and ξ5 are exceptional values of f
and g and they have no more exceptional values. Therefore E(ζ3, ζ3) 6= ∅, and
hence ζ3 is a fixed point T . Since T has at most two fixed points, we may assume
that all E(ξ1, ξ1), E(η1, η1), E(ζ1, ζ1) are empty. Furthermore, we may assume that
E(ξ1, η1) 6= ∅ since f−1(S1) 6= ∅. Then T (ξ1) = η1 and T (η1) = ξ1. Since T is
a one-to-one mapping of C onto C, E(ξ1, ζ1) = ∅, E(η1, ζ1) = ∅. However, this
implies that ζ1 is an exceptional value of f and g, which is a contradiction.

(ii) The case where E(ζ3, ζ3) 6= ∅ and E(ζ4, ζ4) 6= ∅. In this case ζ3 and ζ4
are fixed points of T , and it has no more fixed points, in particular, E(ξj , ξj) =
E(ηj , ηj) = E(ζj , ζj) = ∅ for j = 1, 2. Since f and g have an exceptional value ξ5,
we may assume that they have no exceptional value in S1. Hence we may assume
that E(ξ1, η1) 6= ∅, and we can get a contradiction as in the case (i).

After all, we have f = g.

Theorem 5.1. Let S1, · · · , S5 be pairwise disjoint sets in C with ]S1 = ]S2 = ]S3 =
]S4 = 3 and ]S5 = 1. Let Pj be defining polynomial of Sj for j = 1, 2, 3, 4 and let
S5 = {ξ5}. Assume that P1, P2, P3, P4 are linearly independent over C, and (10)
holds for distinct for distinct 1 ≤ j, k ≤ 4. Then, two nonconstant meromorphic
functions on C sharing S1, · · · , S5 IM are identical.

Acknoledgement. The authors are grateful to the referee for many helpful
suggestions.
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