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Abstract. In this paper, we introduced a Henstock-type integral named N - in-

tegral of a real valued function f on a closed and bounded interval [a, b]. The

set N -integrable functions lie entirely between Riemann integrable functions and
Henstock-Kurzweil integrable functions. Furthermore, this new integral integrates

all improper Riemann integrable functions even if they are not Lebesgue integrable.

It was shown that for a Henstock-Kurzweil integrable function f on [a, b], the fol-
lowing are equivalent:

(1) The function f is N -integrable;

(2) There exists a null set S for which given ε > 0 there exists a gauge δ such

that for any δ-fine partial division D = {(ξ, [u, v])} of [a, b] we have

(φS(D) ∩ Γε)
∑
|f(v)− f(u)||v − u| < ε

where φS(D) = {(ξ, [u, v]) ∈ D : ξ /∈ S} and

Γε = {(ξ, [u, v]) : |f(v)− f(u)| ≥ ε}
and

(3) The function f is continuous almost everywhere.

A characterization of continuous almost everywhere functions was also given.

Key words and Phrases: N -integral, Continuity almost everywhere, Henstock-

Kurzweil integral.

1. INTRODUCTION

Recall that a real valued function f on [a, b] is said to be Riemann integrable
to A if for every ε > 0 there exists a constant δ > 0 such that for any division D of
[a, b] given by

a = x0 < x1 < · · · < xn = b and {ξ1, ξ2, . . . , ξn}
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with xi−1 ≤ ξi ≤ xi and xi − xi−1 < δ for all i, we have∣∣∣∣∣
n∑
i=1

f(ξi)(xi − xi−1)−A

∣∣∣∣∣ < ε. (1)

One may see [1], [4], [6], or [8] for further details. The Lebesgue criterion for
Riemann integrability states that a function f : [a, b]→ R is Riemann integrable if
and only if f is bounded and the set of discontinuities of f has measure 0. In this
paper, we define an integral that can integrate bounded and unbounded continuous
almost everywhere functions which are Henstock integrable. The idea is to exclude
some problematic point-interval pairs of a division in forming the Riemann sum.
In turn, this new integral can integrate all improper Riemann integrable functions
and even more.

The whole paper is composed of five sections. The second section discusses the
basic properties of the N -integral, including Saks-Henstock Lemma. In the third
section, characterizations of the N -integrable functions will be given by looking at
the points of discontinuity. The development of the characterizations utilizes the
idea of Γε which was adopted from [2] and [9]. But this time Γε is defined based
on discontinuity instead of nondifferentiability. In the fourth section, we explicitly
identify the set that would optimally identify the point-interval pairs that are to
be excluded in forming the Riemann sums. Finally, in the last section, we present
examples to strengthen our results.

2. THE N-INTEGRAL

Let [a, b] be a compact interval in R. Given a subset X of [a, b], we denote
the closure of X by X. A partial division D = {(ξ, [u, v])} of [a, b] is a finite
collection of point-interval pairs (ξ, [u, v]) with ξ ∈ [u, v], [u, v] ⊂ [a, b], and the
subintervals [u, v] are nonoverlapping. If in case the union of the subintervals [u, v]
in D is [a, b], then we simply say that D is a division of [a, b]. For a partial division
D = {(ξ, [u, v])} of [a, b], we define I(D) such that

I(D) = {[u, v] : (ξ, [u, v]) ∈ D}.

Given a subset S of [a, b], a partial division D = {(ξ, [u, v])} of [a, b] is said to be
S-tagged if for each (ξ, [u, v]) ∈ D, ξ ∈ S. A gauge on a set X is a function from
X to the set of positive real numbers. Given a gauge δ on [a, b], a point-interval
pair (ξ, [u, v]) is said to be δ-fine if [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)). A partial division
D = {(ξ, [u, v])} is said to be δ-fine if every point-interval pair (ξ, [u, v]) ∈ D is δ-
fine. Note that for two gauges δ1 and δ2, with δ1(x) ≤ δ2(x) for all x ∈ [a, b], every
δ1-fine partial division of [a, b] is also δ2-fine. Recall that a function f on [a, b] is
said to be Henstock integrable if there exists a real number A for which given ε > 0
there exists a gauge δ on [a, b] such that for any δ-fine division D = {(ξ, [u, v])} we
have ∣∣∣(D)

∑
f(ξ)(v − u)−A

∣∣∣ < ε.
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See for example [1], [4], [8] or [6]. Here A is the integral of f on [a, b]; it is unique,
and we write

(H)

∫ b

a

f = A.

If a function f is Henstock integrable on [a, b] then it is Henstock integrable on any
subinterval [u, v] of [a, b]. It follows that given a Henstock integrable function f on
[a, b], we can define a function F by F (a) = 0 and

F (x) = (H)

∫ x

a

f for x ∈ (a, b].

The function F is called the primitive of f . A Henstock primitive satisfies the
Strong Lusin (SL) condition [8]. More precisely, for a Henstock primitive F , given
a set S of measure zero and ε > 0, there exists a gauge δ on [a, b] such that for
all δ-fine S-tagged partial division D of [a, b] we have (D)

∑
|F (u, v)| < ε where

F (u, v) = F (v) − F (u) =
∫ v
u
f. By a null set, we mean a set of measure zero or

empty. Given a null set S in [a, b] and a partial division D of [a, b], we set φS(D)
as

φS(D) = {(ξ, [u, v]) ∈ D : ξ /∈ S}

and DS as

DS = {(ξ, [u, v]) ∈ D : ξ ∈ S}.

For any partial division D of [a, b] define the partial division D∗ = {(ξ∗, [u, v])}
where [u, v] comes from D, ξ∗ ∈ [u, v], and

I(D∗) = I(D).

In this case, we say that D∗ is D-compatible or we simply write D∗ ∼ D. The
term D−compatible was first used by Lee in her thesis [5]. We shall now state the
definition of N -integral.

Definition 2.1. A function f on [a, b] is said to be N -integrable if there exists
a null set S and a real number A for which given ε > 0 there exists a gauge δ
on [a, b] such that for any δ-fine division D = {(ξ, [u, v])} of [a, b] and any D∗ =
{(ξ∗, [u, v])} ∼ φS(D) we have∣∣∣(D∗)∑ f(ξ∗)(v − u)−A

∣∣∣ < ε.

Here, A is the N -integral of f over [a, b] and we write∫ b

a

f = A.

A null set S satisfying the N -integrability condition for f , is said to be an
avoided set for f on [a, b].

Given a measure zero subset S of [a, b] and a division D of [a, b], φS(D) may
not be a division of [a, b]. But given α > 0, there exists a gauge δ such that for any
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δ-fine division D = {(ξ, [u, v])} of [a, b]∣∣∣∣∣∣[a, b]\
 ⋃

(ξ,[u,v])∈φS(D)

[u, v]

∣∣∣∣∣∣ < α.

This follows from the fact that, for a measure zero set S and α > 0, there exists
an open set O containing S whose measure is less than α. From this fact also
follows that for a function f , if S is a set of measure zero and ε > 0 there exists
a gauge δ such that for any δ-fine S-tagged partial division DS of [a, b] we have
(DS)

∑
|f(ξ)||v − u| < ε. Given a division D = {(ξ, [u, v])} of [a, b] define ‖D‖ =

max{|v − u| : (ξ, [u, v]) ∈ D}. Recall that a function f on [a, b] is said to be
Riemann integrable if there exists a real number A for which given ε > 0 there
exists a positive number δε such that for any division D = {(ξ, [u, v])} of [a, b] with
‖D‖ < δε we have ∣∣∣(D)

∑
f(ξ)(v − u)−A

∣∣∣ < ε.

See for example [1, 6]. Let ε > 0 and choose such positive number δε. Define
a constant gauge δ on [a, b] such that for each ξ ∈ [a, b], δ(ξ) = δε/2. If D =
{(ξ, [u, v])} is a δ-fine division of [a, b] and D∗ ∼ D then ‖D‖ = ‖D∗‖ < δε. It
follows that ∣∣∣(D∗)∑ f(ξ∗)(v − u)−A

∣∣∣ < ε.

We conclude this by the following theorem.

Theorem 2.2. Let f be a function on [a, b]. If f is Riemann integrable then f is
N -integrable.

Theorem 2.3. Let f be an N -integrable function on [a, b]. Then f is Henstock
integrable on [a, b].

Proof. Let f be N -integrable on [a, b], A its integral, S be an avoided set for f
on [a, b], and ε > 0. Then there exists a gauge δ1 such that for any δ1-fine division
D = {(ξ, [u, v])} of [a, b] we have∣∣∣(φS(D))

∑
f(ξ)(v − u)−A

∣∣∣ < ε.

Since S is of measure zero, it follows from the discussion above that there exists
a gauge δ2 such that for any δ2-fine S-tagged partial division DS of [a, b] we have
(DS)

∑
|f(ξ)||v−u| < ε. Now define δ(x) = min{δ1(x), δ2(x)}. Then for any δ-fine

division D of [a, b] we have∣∣∣(D)
∑

f(ξ)(v − u)−A
∣∣∣ ≤ ∣∣∣(φS(D))

∑
f(ξ)(v − u)−A

∣∣∣
+(DS)

∑
|f(ξ)||v − u|

< 2ε.

Therefore f is Henstock integrable.
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The idea of taking the minimum of two gauges, as seen in the proof of The-
orem 2.3, has been very useful throughout this paper, even if there are times that
the process of doing it is not mentioned anymore.

Theorem 2.4 (Cauchy-Criterion). Let f be a function on [a, b]. Then f is N -
integrable if and only if there exists a null set S for which given ε > 0 there exists a
gauge δ on [a, b] such that for any δ-fine divisions D and P , for any D∗ ∼ φS(D)
and P ∗ ∼ φS(P ), we have∣∣∣(D∗)∑ f(ξ∗)(v − u)− (P ∗)

∑
f(ξ∗)(v − u)

∣∣∣ < ε.

The following theorems can be shown.

Theorem 2.5. Let f be a function on [a, b].

(1) If f is N -integrable on [a, b], then f is N -integrable on every subinterval of
[a, b].

(2) For c ∈ (a, b), if f is N -integrable on each of the intervals [a, c] and [c, b],

then f is N -integrable on [a, b] and
∫ c
a
f +

∫ b
c
f =

∫ b
a
f .

The following theorem states the linearity of the N -integral.

Theorem 2.6. Let f and g be N -integrable functions on [a, b] and k ∈ R. Then

(1) The function kf is N -integrable on [a, b] and
∫ b
a
kf = k

∫ b
a
f , and

(2) The function f + g is N -integrable and
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g.

Theorem 2.7. Let f be an N -integrable function on [a, b] and X be an avoided set
for f . If S is a null set containing X then S is also an avoided set for f .

Proof. Let X be an avoided set for an N -integrable function f on [a, b], S be
a subet of [a, b] with measure zero containing X, and ε > 0. Then there exists a
gauge δ on [a, b] such that for any δ-fine division D of [a, b], and any D∗ ∼ φX(D)
we have ∣∣∣∣∣(D∗)∑ f(ξ∗)(v − u)−

∫ b

a

f

∣∣∣∣∣ < ε.

Further since S is of measure zero, we may assume that for any δ-fine S-tagged
partial division DS of [a, b] we have

(DS)
∑
|f(ξ)||v − u| < ε.

Now let D be any δ-fine division of [a, b], D∗ ∼ φS(D) and DS\X = {(ξ, [u, v]) ∈
D : ξ ∈ S\X}. Then (D∗ ∪DS\X) ∼ φX(D) and∣∣∣∣∣(D∗)∑ f(ξ∗)(v − u)−

∫ b

a

f

∣∣∣∣∣ ≤
∣∣∣∣∣(D∗ ∪DS\X)

∑
f(ξ∗)(v − u)−

∫ b

a

f

∣∣∣∣∣
+(DS\X)

∑
|f(ξ)||v − u|

< 2ε.
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Theorem 2.8 (Saks-Henstock Lemma). Let f be an N -integrable function on [a, b]
with primitive F . Then there exists a null set S such that given ε > 0, there exists
a gauge δ on [a, b] such that for any δ-fine division D of [a, b] and any D∗ ∼ φS(D)
we have

(D∗)
∑
|f(ξ∗)(v − u)− F (u, v)| < ε.

Proof. Let f be N -integrable. Then f is Henstock integrable and the primitive
F of f satisfies the Strong Lusin Condition (SL). Let S be an avoided set for f on
[a, b] and ε > 0. Then there exists gauge δ on [a, b] such that for any δ-fine division
D of [a, b] and any D∗ ∼ φS(D) we have∣∣∣(D∗)∑ f(ξ∗)(v − u)− F (a, b)

∣∣∣ < ε

8
.

Let ε > 0 and choose such δ. Since F is SL we may assume that for any δ-fine
S-tagged partial division D we have

(D)
∑
|F (u, v)| < ε

4
.

Now, let D be a δ-fine division of [a, b] and D∗ ∼ φS(D). Split D∗ into D1 and
D2 such that D1 contains those pairs (ξ∗, [u, v]) with f(ξ∗)(v − u) − F (u, v) < 0.
Let DS = {(ξ, [u, v]) ∈ D : ξ ∈ S}. We will show that (Di)

∑
|f(ξ∗)(v − u) −

F (u, v)| < ε
4 for i = 1, 2. For D2, let D0

2 =
⋃

(ξ∗,[u,v])∈D2
[u, v]. For DS , let

D0
S =

⋃
(ξ,[u,v])∈DS [u, v]. The subset [a, b]\(D0

2 ∪D0
S) of [a, b] is a finite union of

subintervals of [a, b]. We know that for each interval in [a, b]\(D0
2 ∪D0

S), f is N -
integrable. It follows that there exists a gauge δ2 ≤ δ such that for any δ2-fine

division B of [a, b]\(D0
2 ∪D0

S) and any B∗ ∼ φS(B) we have∣∣∣(B∗)∑ f(ξ∗)(v − u)− (B)
∑

F (u, v)
∣∣∣ < ε

8
.

Let B be a δ2-fine division of [a, b]\(D0
2 ∪D0

S), B∗ ∼ φS(B), and C be the subset
of φS(D) such that D2 ∼ C. Based on how B is obtained, B and D2 are nonover-
lapping. Furthermore, notice that the union C ∪ B ∪ DS forms a δ-fine division
of [a, b]. Denote the union C ∪ B ∪DS by Q. Since B∗ ∼ φS(B) and D2 ∼ C, it
follows that (D2 ∪B∗) is φS(Q)-compatible. Therefore

(D2)
∑
|f(ξ∗)(v − u)− F (u, v)| =

∣∣∣(D2)
∑
{f(ξ∗)(v − u)− F (u, v)}

∣∣∣
=
∣∣∣(D2)

∑
f(ξ∗)(v − u)− (C)

∑
F (u, v)

∣∣∣
≤
∣∣∣(D2 ∪B∗)

∑
f(ξ∗)(v − u)− F (a, b)

∣∣∣
+
∣∣∣(B∗)∑ f(ξ∗)(v − u)− (B)

∑
F (u, v)

∣∣∣
+ (DS)

∑
|F (u, v)|

<
ε

8
+
ε

8
+
ε

4

=
ε

2
.
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A similar argument can be made for D1.

3. THE N-INTEGRABLE FUNCTIONS

In this section, we identify which among the Henstock integrable functions
are N -integrable. For a partial division D = {(ξ, [u, v])} of [a, b] define the double-
tagged partial division D?? = {({s, t}, [u, v])} where [u, v] comes from D, s, t ∈
[u, v], and the union of intervals in D and D?? are the same. In this case we say
that D?? is D-double-tagged compatible or we simply write D?? ≈ D. Given a
function f on [a, b] and ε > 0 we set

Γ??ε = {({s, t}, [u, v]) : |f(s)− f(t)| ≥ ε, s, t ∈ [u, v] and [u, v] ⊂ [a, b]}.

Note that the Γ??ε is dependent only on f and ε.

Theorem 3.1. Let f be a Henstock integrable function on [a, b] and F be its prim-
itive. Then f is N -integrable if and only if there exists a null set S for which
given ε > 0 there exists a gauge δ on [a, b] such that for any δ-fine partial division
D = {(ξ, [u, v])} of [a, b], and any φS(D)-double-tagged compatible partial division
D?? = {({s, t}, [u, v])} we have

(D?? ∩ Γ??ε )
∑
|f(s)− f(t)||v − u| < ε.

Proof. Let f be an N -integrable function on [a, b], S be an avoided set for f on
[a, b] and ε > 0. Then there exists a gauge δ on [a, b] such that for any δ-fine partial
division D of [a, b] and any D∗ ∼ φS(D) we have

(D∗)
∑
|f(ξ∗)(v − u)− F (u, v)| < ε.

Choose such a gauge δ and let D = {(ξ, [u, v])} be a δ-fine partial division of [a, b]. If
D?? = {({s, t}, [u, v])} is a φS(D)-double-tagged compatible partial division of [a, b],
then D∗1 = {(s, [u, v]) : ({s, t}, [u, v]) ∈ D?} and D∗2 = {(t, [u, v]) : ({s, t}, [u, v]) ∈
D?} are both φS(D)-compatible. It follows that

(D?? ∩ Γ??ε )
∑
|f(s)− f(t)||v − u| ≤ (D?? ∩ Γ??ε )

∑
|f(s)(v − u)− F (u, v)|

+(D?? ∩ Γ??ε )
∑
|F (u, v)− f(t)(v − u)|

< ε+ ε

= 2ε.

For the converse, there exists a null set S such that given ε > 0, there exists a
gauge δ such that for any δ-fine partial division D = {(ξ, [u, v])} of [a, b] and any
φS(D)-double-tagged compatible partial division D?? = {({s, t}, [u, v])} we have

(D?? ∩ Γ??ε )
∑
|f(s)− f(t)||v − u| < ε.
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Let ε > 0 be given and choose such a gauge δ. Since f is Henstock integrable, we
may assume that for any δ-fine partial division D = {(ξ, [u, v])} of [a, b] we have

(D)
∑∣∣∣∣f(ξ)(v − u)− (H)

∫ v

u

f

∣∣∣∣ < ε and (DS)
∑
|f(ξ)||v − u| < ε.

Now, let D = {(ξ, [u, v])} be a δ-fine division of [a, b] and D∗ = (ξ∗, [u, v]) ∼ φS(D).
Note that the double-tagged partial division D?? = {({ξ, ξ∗}, [u, v])} is φS(D)-
double-tagged compatible and

|(D∗)
∑
f(ξ∗)(v − u)− (φS(D))

∑
f(ξ)(v − u)|

≤ (D??)
∑
|f(ξ∗)− f(ξ)| |v − u|

≤ (D??\Γ??ε )
∑
|f(ξ∗)− f(ξ)| |v − u|

+ (D?? ∩ Γ??ε )
∑
|f(ξ∗)− f(ξ)| |v − u|.

Then ∣∣∣(D∗)∑ f(ξ∗)(v − u)− (H)
∫ b
a
f
∣∣∣

≤
∣∣∣(D∗)∑ f(ξ∗)(v − u)− (φS(D))

∑
f(ξ)(v − u)

∣∣∣
+

∣∣∣∣∣(φS(D) ∪DS)
∑

f(ξ)(v − u)− (H)

∫ b

a

f

∣∣∣∣∣
+ (DS)

∑
|f(ξ)||v − u|

< ε(b− a) + ε+ ε+ ε

= ε(b− a+ 2).

In what follows, given a function f on [a, b] and a positive number ε,

Γε = {(ξ, [u, v]) : |f(v)− f(u)| ≥ ε, ξ ∈ [u, v] and [u, v] ⊂ [a, b]}.
Similar to Γ??ε , Γε depends only on f and ε.

Theorem 3.2. Let f be an N -integrable function on [a, b]. Then there exists a
null set S for which given ε > 0 there exists a gauge δ on [a, b] such that for any
δ-fine partial division D of [a, b]

(φS(D) ∩ Γε)
∑
|f(v)− f(u)||v − u| < ε.

Proof. This follows immediately from Theorem 3.1.

Theorem 3.3. Let f be a function on [a, b]. If there exists a null set S for which
given ε > 0 there exists a gauge δ on [a, b] such that for any δ-fine partial division
D = {(ξ, [u, v])} of [a, b] we have

(φS(D) ∩ Γε)
∑
|f(v)− f(u)||v − u| < ε

then f is continuous almost everywhere on [a, b].
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Proof. Let Df be the set of discontinuity of f in [a, b]\S. Assume that a, b ∈ S.
If x ∈ Df , there exists η(x) > 0 such that for all s > 0 there exists a closed interval
Jx,s whose one endpoint is x with Jx,s ⊂ (x − s, x + s) and that |f(Jx,s)| > η(x).
Here f(I) = |f(v) − f(u)| whenever I = [u, v]. Fix a positive integer n and let
En =

{
x ∈ [a, b] : η(x) ≥ 1

n

}
. We will show that for each n, En is of Lebesgue

measure zero. Given ε > 0, there exists a gauge δ mapping [a, b] to (0, 1) such that
for any δ-fine partial division D of [a, b] we have

(D ∩ Γ ε
n

)
∑
|f(Ix)||Ix| <

ε

n

Let Sn = {Jx,s : x ∈ En, 0 < s < δ(x)}. Note that Sn is a Vitali cover for En. By
the Vitali covering theorem there are pairwise disjoint intervals J1, J2, . . . , Jk in Sn
and sequence of closed intervals {Ji}∞i=k+1 ⊂ Sn such that

En ⊂
k⋃
i=1

Ji ∪
∞⋃

i=k+1

Ji and

∞∑
i=k+1

|Ji| ≤ ε.

Note that D = {(x, Ji)}ki=1 is a δ-fine partial division of [a, b] and for each Ji ∈ D,
Ji = Jx,s for some Jx,s in Sn. Hence

1

n
(D)

∑
|Ji| =

1

n
(D)

∑
|Jx,s|

≤ (D)
∑

η(x)|Jx,s|

< (D\Γ ε
n

)
∑
|f(Jx,s)||Jx,s|+ (D ∩ Γ ε

n
)
∑
|f(Jx,s)||Jx,s|

≤ ε

n
(b− a) +

ε

n

It follows that µ(En) < ε(2 + b − a). Since ε is arbitary we conclude that
En is of measure zero. Since Df is a countable union of measure zero sets En, Df

is of measure zero. Since Df and S are of measure zero, we conclude that f is
continuous almost everywhere on [a.b].

Theorem 3.4. Let f be a Henstock integrable function on [a, b]. If f is continuous
almost everywhere on [a, b] then f is N -integrable.

Proof. Let f be continuous almost everywhere on [a, b] and Henstock integrable.
Let Df be the set of discontinuity of f on [a, b]. Let ε > 0. Since f is Henstock
integrable, there exists a gauge δ on [a, b] such that for any δ-fine partial division
D = {(ξ, [u, v])} of [a, b] we have

(D)
∑∣∣∣∣f(ξ)(v − u)− (H)

∫ v

u

f

∣∣∣∣ < ε and (DDf )
∑∣∣∣∣(H)

∫ v

u

f

∣∣∣∣ < ε

where DDf = {(ξ, [u, v]) ∈ D : ξ ∈ Df}. By continuity of f on each element of
[a, b]\Df , we may assume that for every δ-fine pair (ξ, [u, v]) with ξ ∈ [a, b]\Df

|f(ξ)− f(ξ∗)| < ε

whenever ξ∗ ∈ [u, v]. So for any δ-fine division D of [a, b] and D∗ ∼ φDf (D) we
have



The N -integral 251∣∣∣(D∗)∑ f(ξ∗)(v − u)− (H)
∫ b
a
f
∣∣∣

≤
∣∣∣∣(D∗)∑ f(ξ∗)(v − u)− (φDf (D))

∑
(H)

∫ v

u

f

∣∣∣∣
+ (DDf )

∑∣∣∣∣(H)

∫ v

u

f

∣∣∣∣
≤ (φDf (D))

∑
|f(ξ∗)− f(ξ)||v − u|

+ (φDf (D))
∑∣∣∣∣f(ξ)(v − u)− (H)

∫ v

u

f

∣∣∣∣
+ (DDf )

∑∣∣∣∣(H)

∫ v

u

f

∣∣∣∣
< ε(b− a) + ε+ ε.

Combining Theorem 3.2, Theorem 3.3 and Theorem 3.4, we have the following
result.

Theorem 3.5. Let f be a function [a, b]. Then the following statements are equiv-
alent:

(1) The function f is N -integrable
(2) The function f is Henstock integrable on [a, b] and there exists a null set S

for which given ε > 0 there exists a gauge δ such that for any δ-fine partial
division D = {(ξ, [u, v])} of [a, b] we have

(φS(D) ∩ Γε)
∑
|f(v)− f(u)||v − u| < ε

and

(3) The function f is Henstock integrable on [a, b] and continuous almost ev-
erywhere.

4. THE AVOIDED SET

For a Riemann integrable function f , the avoided set may be empty, even if
f has discontinuities. So it is natural to ask what is the optimal avoided set for an
N -integrable function. We answer this query in this section. The ideas here will
also able us to present N -integral as a generalization of improper Riemann integral.
In what follows, for a function f on [a, b], we set

S∞ = {x ∈ [a, b] : for some {xn} in [a, b], xn → x and f(xn)→ ±∞}.
Note that for any function f on [a, b], S∞ is closed.

Lemma 4.1. Let f : [a, b] → R be N -integrable and S be an avoided set for f .
Then S∞ ⊂ S.

Proof. Let x be in S∞ but not in S and δ be a gauge on [a, b]. Choose a δ-fine
pair (x, [u, v]) such that f is not bounded on [u, v]. Note that since (x, [u, v]) is
δ-fine, it is an element of some δ-fine division D of [a, b] with (x, [u, v]) ∈ φS(D).
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The result below can be easily shown.

Lemma 4.2. Let f : [a, b] → R and X be a subset of [a, b] be of measure with
X ∩ S∞ = ∅. Then given ε > 0, there exists a gauge δ such that for any δ-fine
X-tagged partial division D = {(ξ, [u, v])} of [a, b] and any D∗ = {(ξ∗, [u, v])} with
I (D∗) = I (D) we have

(D∗)
∑
|f(ξ∗)|(v − u) < ε.

Theorem 4.3. Let f : [a, b] → R and suppose that S∞ is of measure zero. Then
f is N -integrable if and only if there exists a real number A for which given ε > 0
there exists a gauge δ such that for any δ-fine partial division D = {(ξ, [u, v])}, and
any D∗ = {(ξ∗, [u, v])} ∼ φS∞(D), we have∣∣∣(D∗)∑ f(ξ∗)(v − u)−A

∣∣∣ < ε.

Proof. Suppose f is N -integrable. Then there exist a subset S of [a, b] of measure
zero and a real number A for which given ε > 0 there exists a gauge δ such that for
any δ-fine partial division D = {(ξ, [u, v])}, and any D∗ = {(ξ∗, [u, v])} ∼ φS(D)
we have ∣∣∣(φS(D))

∑
f(ξ∗)(v − u)−A

∣∣∣ < ε.

From the previous lemma, we may assume that for any δ-fine partial division
D = {(ξ, [u, v])} of [a, b] whose tags are in S \S∞ and any D∗ = {(ξ∗, [u, v])} ∼ D,
we have

(D∗)
∑
|f(ξ∗)|(v − u) < ε.

Now, let D = {(ξ.[u, v])} be a δ-fine division of [a, b] and D∗ = {(ξ∗, [u, v])} ∼
φS∞(D). Set

DS\S∞ = {(ξ.[u, v]) ∈ D : ξ ∈ S and ξ /∈ S∞}.

Note that I (φS(D)) = I
(
D∗ \D∗S\S∞

)
, where D∗S\S∞ is the subset of D∗ such

that

I (D∗S\S∞) = I (DS\S∞).

It follows that∣∣∣(D∗)∑ f(ξ∗)(v − u)−A
∣∣∣ ≤ ∣∣∣(D∗ \D∗S\S∞)∑ f(ξ∗)(v − u)−A

∣∣∣
+
(
D∗S\S∞

)∑
|f(ξ∗)|(v − u)

< 2ε.

The converse follows from the definition.

The importance of stating the result below is that it presents the N -integral
as a generalization of improper Riemann integral.

Theorem 4.4. Let f : [a, b]→ R. Then f is N -integrable if and only if there exists
a real number A and a subset S of [a, b] of measure zero for which given ε > 0 there
exists a gauge δ on [a, b] such that for any δ-fine partial division D = {(ξ, [u, v])},
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and any D∗ = {(ξ∗, [u, v])} ∼ φS(D) we have [u, v] ∩ S = ∅ for each (ξ, [u, v]) ∈
φS(D),

(b− a)− (φS(D))
∑

(v − u) < ε

and ∣∣∣(D∗)∑ f(ξ∗)(v − u)−A
∣∣∣ < ε.

In this case, we may choose S = S∞.

5. SOME EXAMPLES

Recall that the function f on [0, 1] defined by

f(x) =

{
1 if x is rational,

0 if x is irrational.

is nowhere continuous. This function is called the Dirichlet function. It follows from
Theorem 3.5 that this function, while Henstock integrable, is not N -integrable.
Moreover the function

f(x) =

{
2xsin

(
1
x2

)
− 2

xcos
(

1
x2

)
if x ∈ (0, 1],

0 if x = 0.

while not Riemann integrable, is N -integrable. Therefore the converses of Theorem
2.3 and Theorem 2.2 do not hold. Before we go to our examples, we shall present
a characterization of continuous almost everywhere functions.

Theorem 5.1. A function f on [a, b] is continuous almost everywhere if and only
if there exists a null set S for which given ε > 0 there exists a gauge δ on [a, b] such
that for any δ-fine partial division D = {(ξ, [u, v])} of [a, b] we have

(φS(D) ∩ Γε)
∑
|f(v)− f(u)||v − u| < ε.

Proof. Let f be continuous almost everywhere on [a, b]. Then there exists a null
set S in [a, b] such that f is continuous on every x ∈ [a, b]\S. Let ε > 0 be given.
It follows that there exists a gauge δ on [a, b] such that for any δ-fine pair (ξ, [u, v])
with ξ ∈ [a, b]\S, we have |f(v) − f(u)| < ε. Choose such gauge δ. Then for any
δ-fine division D = {(ξ, [u, v])} of [a, b], we have φS(D) ∩ Γε = ∅. The converse
follows from Theorem 3.3.

A partial partition D = {[u, v]} is a finite collection of nonoverlapping subin-
ervals of [a, b]. Given a subset X of [a, b], a partial partition D is said to be
X-vertexed if for each [u, v] ∈ D, either u ∈ X or v ∈ X. In [6], a function f
on [a, b] is said to be BV ∗(X) if there exists a nonnegative number M such that
for any X-vertexed partial partition D of [a, b] we have (D)

∑
|f(v)− f(u)| ≤ M .

The function f is BV G∗ on [a, b] if [a, b] =
⋃∞
i=1Xi such that for each i, there is a

positive number Mi such that for any Xi-vertexed partial partition D of [a, b] we
have (D)

∑
|f(v)− f(u)| ≤Mi. In this case we say that f is BV G∗ on [a, b] using

{(Xi,Mi)}.
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Theorem 5.2. If a function f on [a, b] is BV G∗ on [a, b] then it is continuous
almost everywhere.

Proof. Let ε > 0 and suppose that f is BV G∗ using {(Xi,Mi)}. For each i, put
δ(x) ≤ ηi for all x ∈ Xi where ηi = ε

Mi2i+1 . Let D be δ-fine a partial division of

[a, b]. For each i, let

Di = {(ξ, [u, v]) ∈ D : ξ ∈ Xi}.
Then

(D ∩ Γε)
∑
|f(v)− f(u)|(v − u) =

∞∑
i=1

(Di ∩ Γε)
∑
|f(v)− f(u)|(v − u)

<

∞∑
i=1

ηi(Di ∩ Γε)
∑
|f(v)− f(u)|

≤
∞∑
i=1

ηi(Di ∩ Γε)
∑
|f(v)− f(ξ)|

+

∞∑
i=1

ηi(Di ∩ Γε)
∑
|f(ξ)− f(u)|

≤
∞∑
i=1

ηiMi +

∞∑
i=1

ηiMi

< ε.

The next result follows from Theorem 3.5 and Theorem 5.2.

Theorem 5.3. Let f be a Henstock integrable function on [a, b]. If f is BV G∗ on
[a, b] then f is N -integrable.

A function f on [a, b] is Baire class one or of first Baire class or simply Baire
one if it is a pointwise limit of a sequence of continuous functions on [a, b]. Recently,
in [3], a Baire one function f was characterized by topologically describing its set
of discontinuity (Df ) and how it behaves on this set. As a consequence, it follows
from Theorem [3, Theorem 3.4] that if for a function f , f(x) = 0 for x ∈ Df , then
f is Baire one. Therefore we have the following result showing the closeness of
N -integrable functions to Baire one functions.

Theorem 5.4. Let f be a function on [a, b] and suppose that Df is of measure

zero. If Df is of measure zero then there exists a Baire one function g on [a, b]
such that g = f almost everywhere on [a, b].

Finally, we present an example whose set of discontinuity is of measure zero
but not countable. Consider the function F defined by

F (x) =

(x− a)2 sin
(

1
x−a

)2
if x ∈ (a, b],

0 if x = a.
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The function F is differentiable at every point in [a, b], F ′(a) = 0 and

F ′(x) = 2(x− a) sin

(
1

(x− a)2

)
− 2

x− a
cos

(
1

(x− a)2

)
for x ∈ (a, b]. Now, consider the Cantor set C. Recal that the Cantor set is nowhere
dense, uncountable, and of measure zero. Let [a, b] \ C = ∪∞n=1(an, bn). For each n,
consider

F1,n(x) =

(x− an)2 sin
(

1
x−an

)2
if x ∈ (an, bn],

0 if x = an

and

F2,n(x) =

(bn − x)2 sin
(

1
bn−x

)2
if x ∈ [an, bn),

0 if x = bn.

Note that both F1,n and F2,n are differentiable on [an, bn] and that the graph of F1,n

is just the reflection of F2,n with respect to
(
an+bn

2 + an+bn
2

)
. From

(
an,

an+bn
2

)
,

choose cn such that F ′1,n(cn) = 0. Then choose dn such that cn − an = bn − dn.
Hence

F1,n(cn) = (cn − an)2 sin

(
1

cn − an

)2

= (bn − dn)2 sin

(
1

dn − dn

)2

= F2,n(dn).

Note also that, by symmetry, F ′2,n(dn) = 0. Now define

Fn(x) =


F1,n(x) if x ∈ (an, cn]

F1,n(cn) if x ∈ (cn, dn)

F2,n(x) if x ∈ [dn, bn).

If we set Fn(an) = Fn(bn) = 0 then Fn is differentiable at all points in [an, bn].
At this point, it is important to note that the the graph of Fn is symmetric with
respect to the midpoint of an and bn. Define a function G on [a, b] by

G(x) =

{
Fn(x) if x ∈ (an, bn),

0 if x ∈ C.

As constructed, for each n, G is differentiable on (an, bn). Furthermore, it can be
shown that G′(ξ) = 0 for ξ ∈ C.

At this point we already know that G is differentiable at any point in [a, b].
So its derivative G′ is Henstock integrable. Note also that G′ is continuous on
(an, bn) for any n. We will show that G is not continuous at any ξ ∈ C. For ξ ∈ C,
choose {(ank , bnk)} such that

ank → ξ as k →∞.

For each k, choose mk > k such that

ank +
1√

2mkπ
∈ (ank , cnk ]
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and set

xk = ank +
1√

2mkπ
.

So xk → ξ but
G′(xk) = −2

√
2mkπ.

We will now show that G′ is N -integrable. Let ε > 0. Since G′ is the derivative of
G there exists a gauge δ such that for any δ-fine pair (ξ, [u, v]) we have

|G′(ξ)(v − u)−G(u, v)| < ε(v − u).

We may assume that for any δ-fine pair (ξ, [u, v]) with ξ ∈ [a, b] \ C, we have

|G′(ξ)−G′(ξ∗)| < ε whenever ξ∗ ∈ [u, v].

Now let D = {(ξ, [u, v])} be a δ-fine division of [a, b] and D∗ ∼ φC(D). Split
D into D1 and D2 such that D1 = {(ξ, [u, v]) ∈ D : ξ ∈ C} and D2 = D \D1. It
follows that∣∣∣(D∗)∑G′(ξ∗)(v − u)−G(a, b)

∣∣∣ ≤ (D∗)
∑
|G′(ξ∗)(v − u)−G(u, v)|

+(D1)
∑
|G(u, v)|

≤ (φC(D))
∑
|G′(ξ∗)−G′(ξ)|(v − u)

+(φC(D)
∑
|G′(ξ)(v − u)−G(u, v)|

+(D1)
∑
|G(u, v)−G′(ξ)(v − u)|

+(D1)
∑
|G′(ξ)||v − u|

≤ ε(b− a) + ε(b− a)

< 2ε(b− a).

Therefore G′ is N -integrable on [a, b]. Furthermore, it can be shown that for the
function G, S∞ = C. The function G′ is neither Lebesgue nor improper Riemann
integrable.

Excluding the point-interval pairs which are tagged in the avoided set S
in forming the Riemann sum enables us to integrate not just all Riemann inte-
grable functions but even all improper Riemann integrable functions which are
not Lebesgue integrable. In fact, there are N -integrable functions that are nei-
ther Lebesgue nor improper Riemann integrable. Since the discontinuity of an
N -integrable function is Fσ and of measure zero, it follows from [10, p. 273] that it
is of first category. A natural question that arises from this paper is whether it is
possible to develop an integral that integrates functions whose sets of discontinuity
are of the first category.
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