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Abstract. We consider the hyperbolic Ricci-Bourguignon flow(HRBF ) equation

on Riemannian surfaces and we find a sufficient and necessary condition to this flow

has global classical solution. Also, we show that the scalar curvature of the solution

metric gij convergence to the flat curvature.
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1. Introduction

Let (M, g) be an n-dimensional complete Riemannian manifold with Rie-
mannian metric gij . The general variation equation

∂2gij
∂t2

+ 2Rij + F(g,
∂g

∂t
) = 0, (1)

was introduced by Kong and Liu ([4]) and called the generalized hyperbolic geomet-
ric flow (denoted by HGF). Here F are some smooth functions of the Riemannian
metric and its first derivative with respect to t, and we consider Rij as the com-
ponents of Ricci curvature tensor. Liu and Zhang in ([8]) have shown that the
hyperbolic geometric flow (HGF) has global classical solution on Riemannian sur-
faces. In this paper, we would like to prove that the global solution of hyperbolic
Ricci-Bourguignon flow (HRBF) exists on Riemannian surfaces.
The present work investigates the variation of a Riemannian metric gij on a Rie-
mannian surface M by its Ricci curvature tensor Rij and scalar curvature R under
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the following equation

∂2gij
∂t2

= −2Rij + 2ρRgij (2)

where ρ is a real constant. When ρ = 0, this equation is hyperbolic geometric
flow and the global existence and blowup phenomenon of smooth solutions to this
flow on Riemannian surface have been investigated in [8]. The Ricci-Bourguignon

flow is
∂gij
∂t = −2Rij + 2ρRgij and the short time existence and uniqueness for

solution to the Ricci-Bourguignon flow on [0, T ) were showed by Catino et al ([1])
for ρ < 1

2(n−1) .

This study regards the initial metric as follows

ds2 = u0(x)(dx2 + dy2) at t = 0 (3)

on a surface of topological type R2, where u0(x) is a function from C2 class with
bounded C2 norm and the following inequality is hold

0 < k ≤ u0(x) ≤ m <∞ (4)

where k and m are positive constants.
Since all the information about curvature is contained in the scalar curvature

function R, we can simplify the HRBF equation on this surface. According to our
notation, R = 2K, where K denotes Gauss curvature and also the Ricci curvature
is given by Rij = 1

2Rgij , so the (HRBF) equation simplifies to

∂2gij
∂t2

= −R(1− 2ρ)gij . (5)

At least locally the metric for a surface can be written as gij = u(t, x, y)δij , where
u(t, x, y) > 0, and δij is Kronecker’s symbol. Hence, we have

R = −∆ lnu

u
(6)

as a result, the aforementioned equation (5) reduces to utt − (1− 2ρ)∆ lnu = 0.
The initial data u0(x) depends only on x and not y; thus, we can consider the
Cauchy problem as below

utt − (1− 2ρ)(lnu)xx = 0,

u = u0(x), at t = 0

ut = u1(x), at t = 0

(7)

where u1(x) ∈ C1 with bounded C1 norm. By using the transformation

φ = lnu, (8)

Kong and Liu in ([5]) proved a theorem as follows

Theorem 1.1. Suppose that u1(x) ≥ |u′0(x)|/
√
u0(x) for all x ∈ R. Then, the

Cauchy problem (7) admits a unique global solution for all t ∈ R.

Moreover, if u1(x) ≡ u′0(x)/
√
u0(x), and there exists a point x0 ∈ R such
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that u′0(x0) < 0, then the Cauchy problem (7) admits a unique classical solution
only in [0, T )× R, where

T = − 2

infx{u′0(x)u
−3/2
0 (x)}

. (9)

The following theorem will proven without using (6) in our investigate.

Theorem 1.2. Let

u1(x) +
u′0(x)√
u0(x)

≥ 0 at all x ∈ R, (10)

and

u1(x)− u′0(x)√
u0(x)

≥ 0 at all x ∈ R. (11)

Hence, the Cauchy problem (7) has a unique global solution for all t ∈ R.

Theorem 1.3. If a point x0 ∈ R exists, which satisfy

u1(x0) +
u′0(x0)√
u0(x0)

< 0 (12)

or there exists a point x0 ∈ R, such that

u1(x0)− u′0(x0)√
u0(x0)

< 0 (13)

thus, the Cauchy problem (7) has a unique classical solution only in [0, T )× R.

Note. Based on Theorem 1.2, we can conclude the Cauchy problem
∂2gij
∂t2 = −2Rij + 2ρRgij , for i, j = 1, 2

gij = u0(x)δij , for t = 0
∂gij
∂t = u1(x)δij , for t = 0 and i, j = 1, 2.

has a unique smooth solution for all t ∈ R. Besides we can consider the solution
metric gij as below

gij = u(x, t)δij for i, j = 1, 2. (14)

We will prove the above mentioned Theorems 1.2 and 1.3, in the subsequent
sections (3 and 4, respectively). Moreover, using Theorem 1.2, the following theo-
rem will be proven in Section 5.

Theorem 1.4. Let be

infx{u1(x) +
u′0(x)√
u0(x)

} > 0 and infx{u1(x)− u′0(x)√
u0(x)

} > 0. (15)

Hence, a unique classical solution of (1) is exist as the form (14) for all time.
Furthermore, the scalar curvature R(x, t) relates to the solution metric gij admits

R(x, t)→ 0 as t→ +∞,
and R(x, t) ≤ k1 for all (t, x) ∈ R+ × R, where k1 is a positive constant and
independent of t and x.
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2. Preliminaries

In this section we require only to discuss the classical solution on t ≥ 0. The
result for t ≤ 0 can be easily obtained.

Suppose that

ut = v and ux = w. (16)

Thus, from the above equations and Cauchy problem (7) we have

ut = v, wt − vx = 0, and vt − (
1− 2ρ

u
)wx = (2ρ− 1)

w2

u2
. (17)

Eigenvalues of equations (17) can be easily calculated as follows

λ1 = −λ, λ2 = 0, λ3 = λ, λ =

√
1− 2ρ

u
(18)

and we have the matrices L(U) and R(U)(where U = (u,w, v)) of left and right
eigenvectors, respectively as below

L(U) =

l1(U)
l2(U)
l3(U)

 =

0 λ 1
1 0 0
0 −λ 1

 ,

R(U) =
(
r1(u), r2(u), r3(u)

)
=

0 1 0
λ 0 −λ
1 0 1

 .

Equation system (17) is a linear degenerate strict hyperbolic system because of
∇λi(U)ri(U) ≡ 0 for i = 1, 2, 3.

Define p and q as follows

p = v + λw and q = v − λw. (19)

Lemma 2.1. p and q satisfy the following equations:

pt − λpx =
1

4(1− 2ρ)
λ2(q − p)p, (20)

ut =
1

2
(p+ q), (21)

qt + λqx =
1

4(1− 2ρ)
λ2(p− q)q. (22)

Proof. By differentiating of the function λ with respect to t and x, λt and λx can
easily be obtained as,

λt = − 1

2(1− ρ)
λ3v,

and

λx = − 1

2(1− 2ρ)
λ3w.
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Therefore,

pt − λpx = (v + λw)t − λ(v + λw)x

= vt − λvx + λ(wt − λwx) + w(λt − λλx)

= vt − λ2wx − λ(vx − wt) + w(λt − λλx)

= − 1

2(1− 2ρ)
λ3w(v + λw) =

1

4(1− 2ρ)
λ2(q − p)p.

We can prove (22) in the same way as above, and it is obvious that (21) is hold. �

For the next lemma, consider

r = px +
1

8(1− 2ρ)
λpq and s = qx −

1

8(1− 2ρ)
λpq.

Lemma 2.2. r and s satisfy

rt − λrx =
λ2

4(1− 2ρ)
(2q − 3p)r +

λ3

32(1− 2ρ)
(2p− 3q)pq +

λ3p(q − p)
32(1− 2ρ)2

(p+ 5q),

(23)

st + λsx =
λ2

4(1− 2ρ)
(2q − 3p)r +

λ3

32(1− 2ρ)
(2p− 3q)pq +

λ3p(q − p)
32(1− 2ρ)2

(p+ 5q).

(24)

Proof. Suppose

L1 =
∂

∂t
− λ ∂

∂x
and L2 =

∂

∂t
+ λ

∂

∂x
.

Hence, by a direct computation we can get

L1px =
1

4(1− 2ρ)
λ2((2q − 3p)px + pqx) +

1

8(1− 2ρ)2
λ3p(q − p)2,

L2qx =
1

4(1− 2ρ)
λ2((2p− 3q)qx + qpx)− 1

8(1− 2ρ)2
λ3q(p− q)2.

Now we can easily prove (23) and (23). �

Notice from Cauchy problem (7), (16) and (19), we can write following equa-
tions at t = 0.

p = p0(x) ≡ u1(x) + λ0(x)u′0(x), u = u0(x) (25)

q = q0(x) ≡ u1(x)− λ0(x)u′0(x), (26)

where λ0(x) =
√

1−2ρ
u0(x)

. Now in following theorem we show that the Cauchy problem

(7) has a unique global solution under some conditions.

Theorem 2.3. Let M1 be a positive constant satisfying

0 ≤ p(x, t) ≤M1 and 0 ≤ q(x, t) ≤M1, (27)

then, on D(T),

|u(x, t)| ≤M(T ), |ux(x, t)| ≤M(T ), |ut(x, t)| ≤M(T ),
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|r(x, t)| ≤M(T ), |s(x, t)| ≤M(T ),

where M(T ) is a positive constant, and

D(T ) = {(x, t)|x ∈ R, 0 ≤ t ≤ T , T > 0 }.
Hence, the Cauchy problem (7) has a unique global classical solution on t ≥ 0, by
the local existence theorem of the classical solution to quasilinear hyperbolic systems.

Proof. Consider any point (t, x), and let

x = x1(t, β1), x = x2(t, β2), x = x3(t, β3)

be the λ1, λ2 and λ3 characteristics, respectively, that satisfy

(x1)t = λ1 = −λ, (x2)t = λ2 = 0, (x3)t = λ3 = λ

x1(0, β1) = β1, x2(0, β2) = β2, x3(0, β3) = β3.

By integrating (21) along the λ2 characteristics we can obtain

u(x, t) = u0(β2) +
1

2

∫ t

0

(p+ q)(x2(τ, β2), τ)dτ. (28)

Thus, as a result of (21), (27) and (28) we have

|ut| ≤M1(T ) and 0 < infxu0(x) ≤ u(x, t) ≤M2(T ).

Using a same method, by integrating (23) along the λ1 characteristics x = x1(t, β1)

|r(x, t)| ≤M2(T ) +M3(T )

∫ t

0

R(τ)dτ, where R(t) = supx |r(x, t)| .

Therefore, we have |r(x, t)| ≤ M4(T ) by the Bellman lemma. As a similar way,
holds |s(x, t)| ≤M5(T ). Since (ux)t = 1

2 (r + s), it is obvious that

|ux(x, t)| ≤M6(T ),

which Mi(t) for i = 1, 2, 3, ... denote positive constants. �

3. Proof of Theorem 1.2

On the basis of the local existence and uniqueness theorems of the classical
solutions to the quasilinear hyperbolic systems ([7]), to prove Theorem (1.2) it
suffices to establish uniform a priori estimates of the C1 norms of p, q and u. We
have following lemma from [2, 3].

Lemma 3.1. Suppose

ut + λ1(x, t)ux = A(x, t)(u− v),

vt + λ2(x, t)vx = B(x, t)(v − u),

where λ1, λ2, A and B are continuous functions, and λ1 ≤ λ2. If A and B are both
non positive, then

min(u0(x), v0(x)) ≤ u(x, t), v(x, t) ≤ max(u0(x), v0(x)).

For prove Theorem 1.2 we need the following lemma.
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Lemma 3.2. On the existence domain of the classical solution to the Cauchy prob-
lem (7) and (25), if (10) and (11) hold, then

0 ≤ p(x, t) ≤ supx∈Rp0(x), (29)

0 ≤ q(x, t) ≤ supx∈Rq0(x), (30)

0 < infx∈Ru0(x) ≤ u(x, t) ≤ supxu0(x) + Ct, (31)

where C > 0 is a constant.

Proof. Along λ1 characteristics, we can obtain

p(x, t) = p0(β1)exp(

∫ t

0

1

4(1− 2ρ)
λ2(q − p)(x1(τ, β1), τ)dτ).

By (25) and (10), p0(x) ≥ 0 for all x ∈ R. Therefore, we have p(x, t) ≥ 0. In a
similar way we can prove q(x, t) ≥ 0. As a result of these inequalities, we have

1

4(1− 2ρ)
λ2p ≥ 0 and

1

4(1− 2ρ)
λ2q ≥ 0.

Hence, by Lemma 3.1 we can easily see that

p(x, t) ≤ supxp0(x) and q(x, t) ≤ supxq0(x).

Also, we can get following equality by integrating (21)

u(x, t) = u0(β2) +
1

2

∫ t

0

(p+ q)(x2(τ, β2), τ)dτ.

Thus, we can get to result since p(x, t) ≥ 0 and q(x, t) ≥ 0. �

Proof of Theorem 1.2. Now from aforementioned Lemma 3.2 and Theorem 2.3,
Theorem 1.2 is obvious. �

Note. By (6) and (29), and based on the hypotheses of Theorem 1.2, we
have

|R(x, t)| ≤M7(T ).

4. Proof of Theorem 1.3

The blow-up phenomena of the hyperbolic geometric flow will be discussed in
this section.

Suppose

m =
√
λp and n =

√
λq. (32)

We have

1

4
λ2q =

1− 2ρ

4
((lnu)t − λ(lnu)x) and

1

4
λ2p =

1− 2ρ

4
((lnu)t + λ(lnu)x).

By the use of (16), (19) and Lemma 2.1 the following lemma can be proven
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Lemma 4.1. m and n satisfy

mt − λmx = − 1

4(1− 2ρ)
λ3/2m2, (33)

nt − λnx = − 1

4(1− 2ρ)
λ3/2n2. (34)

Observe that at t = 0, set

m = m0(x) = 4

√
1− 2ρ

u0(x)
(u1(x) +

u′0(x)√
u0(x)

), (35)

n = n0(x) = 4

√
1− 2ρ

u0(x)
(u1(x)− u′0(x)√

u0(x)
). (36)

Proof of Theorem 1.3. Without loss of generality, we assume that (12) holds; in
the same way we can proceed if (13) holds.

As a result of (33) and (34) we have mt − λmx ≤ 0 and nt − λnx ≤ 0. Thus,
we can easily see that

m(x, t) + n(x, t) ≤M0 and M0 ≡ supm0(x) + supn0(x). (37)

Notice that u0(x) ≥ k > 0, and also from (12) and (35) we have m0(x) < 0.
Next, the get following equation is obtained from (33) by integrating along λ1
characteristics. That is,

m(x0, t) = m0(x0)/F (t, x0), (38)

where

F (t, x0) = 1 +m0(x0)/4(1− 2ρ)

∫ t

0

λ3/2(x1(x0, τ), τ)dτ and λ3/2 = (
u

1− 2ρ
)−3/4.

(39)
By (21) and (32), it is easy to see that (( u

1−2ρ )−3/4)t = 3
8(1−2ρ) (m+n). Hence,

we have

(
u

1− 2ρ
)3/4(x, t) = (

u0
1− 2ρ

)3/4(x0) +
3

8(1− 2ρ)

∫ t

0

(m+ n)(x2(x0, τ), τ)dτ. (40)

By (4), (37) and (40), we get

u3/4(x, 0) ≥ k3/4 and u3/4(x, t) ≥M3/4 +
3

8(1− 2ρ)
M0t. (41)

We consider three cases.
Case(i). If M0 < 0, then there exists τ0 = 8(1− 2ρ)M3/4/(3(−M0)) > 0, such that

u(x, t) ≤ 0 and t ≥ τ0.

This imply the system in (7) is meaningless for t ≥ τ0, that is, it admits a unique
local classical solution.
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Case(ii). If M0 = 0, then, by (39) and (41), following inequality can be easily
obtained

F (x0, t) ≤ 1 +
1− 2ρ

4
m0(x0)M−3/4t.

When F (x0, 0) = 1 > 0 andm0(x0) < 0, we can find t0 = 4M3/4/(1−2ρ)(−m0(x0)) >
0, such that

F (x0, t)→ 0+ as t→ t−0 . (42)

Thus, the finite time T = T (x0) > 0 exists such that

F (x0, t)→ −∞ as t→ T−. (43)

Case(iii). If M0 > 0, then, by (39) and (41) we can get

F (x0, t) ≤ 1 +
2m0(x0)

3M0
ln(1 +

3M0

8(1− 2ρ)M3/4
t).

Therefore, since, F (x0, 0) = 1 > 0 and m0(x0) < 0, there exists t∗ > 0 such that
F (x0, t)→ 0+ as t→ t−∗ , and then (43) follows. �

5. Proof of Theorem 1.4

In this section, we will study the asymptotic behaviour of the scalar curvature
R(x, t).

Proof of Theorem 1.4. We assume that (15) holds. Using Lemmas 3.1 and 3.2, we
have

K1 ≤ p(x, t) ≤ K2 and K1 ≤ q(x, t) ≤ K2,

where here after Ci for i = 1, 2, ... denote positive constants independent of t and
x. Therefore, we can obtain the following inequality as a result of (4) and (28)

K3(1 + t) ≤ u(x, t) ≤ K4(1 + t), (44)

and then

K
3/4
3 (1 + t)3/4

1− 2ρ
≤ u3/4(x, t)

1− 2ρ
≤ K

3/4
4 (1 + t)3/4

1− 2ρ
≤ K

3/4
4 (1 + t)

1− 2ρ
.

It follows from(40) and (44) that

K5(1 + ln(1 + t)) ≤ F (x, t) ≤ K6(1 + (1 + t)1/4).

Thus, by (15) and (38), we get

0 ≤ K7

1 + (1 + t)1/4
≤ m(x, t) ≤ K8

1 + ln(1 + t)
. (45)

Similarly, we can obtain

0 ≤ K7

1 + (1 + t)1/4
≤ m(x, t) ≤ K8

1 + ln(1 + t)
. (46)

Hence, m(x, t)→ 0 and n(x, t)→ 0 as t→ +∞. Noting (44), (45) and (46), we get

p =
1√
λ
m =

u

1− 2ρ

1/4
m, q =

1√
λ
n =

u

1− 2ρ
n, ux =

p− q
2λ

=
1

2
u3/4(m− n),
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and

− K8

1 + ln(1 + t)
≤ m(x, t)− n(x, t) ≤ K8

1 + ln(1 + t)
. (47)

Then, we can easily obtain

|ux| ≤ K9
(1 + t)3/4

1 + ln(1 + t)
. (48)

Next an easy derivation gives

uxx =
px − qx

2λ
+

1

2
λ2u2x =

1

2
u1/2(px − qx) +

1

2u
u2x. (49)

Let p̄ = p u and q̄ = q u. Thus, based on [5] we have

L1p̄x = −A1p̄x −B1q̄x,

L2q̄x = −A2p̄x −B2q̄x,

where

A1 =
1

4
(2q̄ + 3q̄), B1 =

3

4
q̄, A2 =

3

4
q̄, B2 =

1

4
(2p̄+ 3q̄).

Therefore, by [5] holds

|p̄x(x, t)| , |q̄x(x, t)| ≤ K10. (50)

Noting that px − qx = ux(p− q)/u+ u(p̄x − q̄x), and from (6) and (49), we have

R =
1

u3
(u2x − uuxx) =

u2x
2u3
− px − qx

2u3/2
=

u2x
2u3
− p̄x − q̄x

2u1/2
− ux(m− n)

2u3
. (51)

Thus, from (41), (47), (48), (50) and (51) we conclude that

|R(x, t)| ≤ K11

(1 + ln(1 + t))2(1 + t)3/2
+

K12

(1 + t)1/2
+

K13(1 + t)3/4

(1 + t)3(1 + ln(1 + t))2
.

Hence, R(x, t)→ 0 as t→ +∞. �
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