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Abstract. Let R and S be commutative rings and M be an (R,S)-module. A

proper (R,S)-submodule P of M is called a left weakly jointly prime if for each

elements a and b in R and (R,S)-submodule K of M with abKS ⊆ P implies either

aKS ⊆ P or bKS ⊆ P . In this paper, we present some properties of left weakly

jointly prime (R,S)-submodule. We give some necessary and sufficient conditions

of left weakly jointly prime (R,S)-submodules. Moreover, we present that every left

weakly jointly prime (R,S)-submodule contains a minimal left weakly jointly prime

(R,S)-submodule. At the end of this paper, we show that in left multiplication

(R,S)-module, every left weakly jointly prime (R,S)-submodule is equal to jointly

prime (R,S)-submodules.
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1. INTRODUCTION

Throughout this paper, ring R and ring S will denote commutative rings,
and R-module M means an Abelian group under addition. The concept of the
R-module has been studied in depth in Adkins [1].

An R-module has been generalized into an (R,S)-bimodule. When R and S
are arbitrary rings, Khumprapussorn et al. [7] have generalized (R,S)-bimodule
into (R,S)-module. An (R,S)-module has an (R,S)-bimodule structure when both
rings R and S have central idempotent elements. When R and S are rings with
identity, we have an (R,S)-module is also an (R,S)-bimodule.

Moreover, an (R,S)-submodule of an (R,S)-module M is a subgroup N of
M such that rns ∈ N for all r ∈ R, n ∈ N , and s ∈ S. Let P be a proper (R,S)-
submodule of M . By Khumprapussorn et al. [7], a proper (R,S)-submodule P
of M is called jointly prime if for each left ideal I of R, right ideal J of S, and
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(R,S)-submodule N of M with INJ ⊆ P implies either IMJ ⊆ P or N ⊆ P .
If R and S are commutative rings, we have a proper (R,S)-submodule P of M is
called jointly prime if for each ideal I of R, ideal J of S, and (R,S)-submodule N
of M with INJ ⊆ P implies either IMJ ⊆ P or N ⊆ P . The concept of jointly
prime (R,S)-submodules when R and S are arbitrary rings have been studied by
Khumprapussorn et al.[7] and continued by Yuwaningsih and Wijayanti [8].

On module theory, a proper submodule N of an R-module M is called prime
if for each element a of R and element m ∈ M with am ∈ N implies m ∈ N or
aM ⊆ N . Prime submodules have been introduced and studied by Dauns [6]. As
time went by, the researchers began to generalize the definition of prime submodules
to weakly prime submodules. A proper submodule N of M is called weakly prime if
for each submodule P of M and elements a, b of R satisfy abP ⊆ N , implies either
aP ⊆ N or bP ⊆ N . Weakly prime submodules have been introduced by Behboodi
and Koohy [4]. Moreover, the studied about weakly prime submodules have been
continued by Azizi [2], Behboodi [5], and Azizi [3].

In this paper, we present some properties of left weakly jointly prime (R,S)-
submodules as the generalization of jointly prime (R,S)-submodules. A proper
(R,S)-submodule P of M is called left weakly jointly prime if for each (R,S)-
submodule N of M and elements a, b of R such that abNS ⊆ P implies either
aNS ⊆ P or bNS ⊆ P . Moreover, we present some properties of left weakly
jointly prime (R,S)-submodules. Some of these properties are as follows: a proper
(R,S)-submodules is left weakly jointly prime if and only if the annihilator of this
quotient (R,S)-module over ring R is a prime ideal of R; when we give a left weakly
jointly prime (R,S)-submodule, the set of that annihilator over ring R form a
chain of prime ideals; if a left weakly jointly prime (R,S)-submodule is irreducible
then it is a jointly prime; any left weakly jointly prime (R,S)-submodule P of
M contains a minimal left weakly jointly prime (R,S)-submodule; and every left
weakly jointly prime (R,S)-submodule is equal to jointly prime (R,S)-submodule
in left multiplication (R,S)-module.

2. LEFT WEAKLY JOINTLY PRIME (R,S)-SUBMODULES

Before we present the definition of left weakly jointly prime (R,S)-submodules,
we describe first the jointly prime (R,S)-submodule. As we have already stated
earlier, when R and S are commutative rings, a proper (R,S)-submodule P of M
is called jointly prime if for each ideal I of R, ideal J of S, and (R,S)-submodule
N of M with INJ ⊆ P implies either IMJ ⊆ P or N ⊆ P . When R and S are
arbitrary rings, Khumprapussorn et al. [7] have given some characteristic of jointly
prime (R,S)-submodules. In this paper, we modify those characteristics when R
and S are commutative rings as follows.

Proposition 2.1. Let M be an (R,S)-module with a ∈ RaS for all a ∈M . Then
the following statements are equivalent.

(1) P is jointly prime.
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(2) For all ideal I of R, m ∈M , and ideal J of S, ImJ ⊆ P implies IMJ ⊆ P
or m ∈ P .

(3) For all a ∈ R, m ∈M , and b ∈ S, amb ∈ P implies aMb ⊆ P or m ∈ P .
(4) For all a ∈ R and m ∈M , amS ⊆ P implies aMS ⊆ P or m ∈ P .

A proper submodule P of R-module M is called weakly prime if for each
submodule K of M and elements a, b of R such that abK ⊆ P implies either
aK ⊆ P or bK ⊆ P . This definition has studied by Azizi [2]. Based on that
definition, we present the definition of left weakly jointly prime (R,S)-submodules
as follows.

Definition 2.2. Let M be an (R,S)-module. A proper (R,S)-submodule P of M is
called left weakly jointly prime if for each (R,S)-submodule N of M and elements
a, b ∈ R such that abNS ⊆ P implies aNS ⊆ P or bNS ⊆ P .

Note that right weakly jointly prime (R,S)-submodules can be defined and
studied analogously. Now, if we have a condition a ∈ RaS for all a ∈ M , then we
give the definition of left weakly jointly prime (R,S)-submodules as follows.

Definition 2.3. Let M be an (R,S)-module with a ∈ RaS for all a ∈ M . A
proper (R,S)-submodule P of M is called left weakly jointly prime if for each (R,S)-
submodule N of M and ideals I and J of R such that IJNS ⊆ P implies either
INS ⊆ P or JNS ⊆ P .

We can easily show that the two definitions of left weakly jointly prime (R,S)-
submodule above are equivalent. Moreover, we give some example of left weakly
jointly prime (R,S)-submodules as follows.

Example 2.4. Let Z be an (2Z, 2Z)-module and 2Z be an (2Z, 2Z)-submodule of
Z. We can show that 2Z is a left weakly jointly prime (2Z, 2Z)-submodule. Let any
a, b ∈ 2Z with a = 2k and b = 2l and let any (2Z, 2Z)-submodule N = xZ of Z, for
some k, l, x ∈ Z. Clearly that abN(2Z) = (8klx)Z2 ⊆ (8klx)Z ⊆ 2Z. We obtain
aN(2Z) ⊆ 4kxZ ⊆ 2Z or bN(2Z) ⊆ 4lxZ ⊆ 2Z. Thus, 2Z is a left weakly jointly
prime (2Z, 2Z)-submodule of Z.

Example 2.5. Let R and S are commutative rings with

R =

{(
a b
0 0

) ∣∣∣∣∣a, b ∈ 2Z

}
and S =

{(
a 0
b 0

) ∣∣∣∣∣a, b ∈ 2Z

}
.

Let an (R,S)-module M with

M =

{(
a 0
b c

) ∣∣∣∣∣a, b, c ∈ 2Z

}
.

Easily we can check that an (R,S)-submodule X of M with

X =

{(
x 0
0 y

) ∣∣∣∣∣x, y ∈ 2Z

}
is a left weakly jointly prime (R,S)-submodule of M .
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3. SOME PROPERTIES OF LEFT WEAKLY JOINTLY PRIME
(R,S)-SUBMODULES

In this section, we present some properties of left weakly jointly prime (R,S)-
submodules. However, before we recall the definition of annihilator of the quotient
(R,S)-modules over a ring R as follows.

Definition 3.1. Let M be an (R,S)-module and N be an (R,S)-submodule of M .
We define the annihilator of quotient (R,S)-module M/N over a ring R is the set
(N :R M) = {r ∈ R | rMS ⊆ N}.

In general (N :R M) is only an additive subgroup of R. But if we have the
condition S2 = S, clearly that (N :R M) is an ideal of R.

Now, we give some properties of left weakly jointly prime (R,S)-submodules.
In the first property, we show that every jointly prime (R,S)-submodules is a left
weakly jointly prime.

Proposition 3.2. Let M be an (R,S)-module with a ∈ RaS for all a ∈M and P
is a jointly prime (R,S)-submodule of M . Then, P is a left weakly jointly prime
(R,S)-submodule of M .

Proof. Let any ideal I, J of R and an (R,S)-submodule N of M such that
IJNS ⊆ P . Since R is commutative, then I(RJNS)S = R(IJNS)S ⊆ IJNS ⊆
P . Since P is jointly prime then we get IMS ⊆ P or RJNS ⊆ P . Since a ∈ RaS
for all a ∈ M , we have IMS ⊆ P or JNS ⊆ P . Hence, INS ⊆ IMS ⊆ P or
JNS ⊆ P . Hence, P is a left weakly jointly prime (R,S)-submodule of M . �

Now, we present some necessary and sufficient conditions of a proper (R,S)-
submodule being left weakly jointly prime.

Proposition 3.3. Let M be an (R,S)-module with S2 = S and N be a proper
(R,S)-submodule of M . Then, N is a left weakly jointly prime (R,S)-submodule of
M if and only if for each (R,S)-submodule K of M with K * N satisfy (N :R K)
is a prime ideal of R.

Proof. (⇒). Let an (R,S)-submodule K of M with N ⊂ K and ideal I and ideal
J of R such that IJ ⊆ (N :R K). This means IJKS ⊆ N . Since N is a left weakly
jointly prime (R,S)-submodule of M , then IKS ⊆ N or JKS ⊆ N . Consequently,
we obtain I ⊆ (N :R K) or J ⊆ (NRK). Hence, (N :R K) is a prime ideal of R.
(⇐). Let an ideal I and J of R and (R,S)-submodule L of M such that IJLS ⊆ N .
Then, IJ(L+N)S ⊆ N , so IJ ⊆ (N :R L+N). Since (N :R L+N) is prime ideal,
then we obtain I ⊆ (N :R L + N) or J ⊆ (N :R L + N). Consequently, we obtain
I(L + N)S ⊆ N or J(L + N)S ⊆ N . Thus, ILS ⊆ N or JLS ⊆ N . Hence, N is a
left weakly jointly prime (R,S)-submodule of M . �

Proposition 3.4. Let M be an (R,S)-module with S2 = S and N be a proper
(R,S)-submodule of M . Then, N is a left weakly jointly prime (R,S)-submodule if
and only if for every a, b ∈ R and m ∈M \N satisfy abmS ⊆ N implies amS ⊆ N
or bmS ⊆ N . On the other word, (N :R m) is a prime ideal of R.
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Proof. (⇒). Let any a, b ∈ R and m ∈ M \ N . We construct 〈m〉 is an (R,S)-
submodule of M . Then we get

abmS ⊆ ab〈m〉S ⊆ N.

Since N is a left weakly jointly prime (R,S)-submodule of M , then we have amS ⊆
a〈m〉S ⊆ N or bmS ⊆ b〈m〉S ⊆ N .
(⇐). Let any a, b ∈ R and (R,S)-submodule K of M with K * N such that
abKS ⊆ N . For each k ∈ K, we have abkS ⊆ N . Based on the hypothesis,
akS ⊆ N or bkS ⊆ N . Thus, aKS ⊆ N or bKS ⊆ N . Hence, N is a left weakly
jointly prime (R,S)-submodule of M . �

Proposition 3.5. Let M be an (R,S)-module with S2 = S and N is a proper
(R,S)-submodule of M . If M satisfies a ∈ RaS for all a ∈ M , then the following
statements are equivalent.

(1) N is a left weakly jointly prime (R,S)-submodule of M .
(2) For any x, y ∈ M , if (N :R x) 6= (N :R y), then N = (N + RxS) ∩ (N +

RyS).

Proof. (1 ⇒ 2). Let r ∈ (N :R x) \ (N :R y), where r ∈ R i.e. rxS ⊆ N and
ryS * N . Since by Proposition 3.4, (N :R y) is a prime ideal of R, it’s easy to
see that (N :R y) = (N :R ryS). If we let t ∈ (N + RxS) ∩ (N + RyS), then
t = n1 + r1xs1 = n2 + r2ys2, where n1, n2 ∈ N , r1, r2 ∈ R, and s1, s2 ∈ S. Note
that

rtS = rn1S + rr1xs1S = rn2S + rr2ys2S

so rtS = rn1S + r1(rx)s1S = rn2S + r2(ry)s2S, where rn1S, rn2S, r1rxS ⊆ N ,
so we obtain r2(ry)S ⊆ N . Since S2 = S, then r2(ry)SS ⊆ N so we get r2 ∈
(N :R ryS) = (N :R y). Then, r2yS ⊆ N so t = n2 + r2ys2 ∈ N . Hence, it’s
proved that (N + RxS) ∩ (N + RyS) ⊆ N . Furthermore, it’s clear that N ⊆
(N + RxS) ∩ (N + RyS). Thus, N = (N + RxS) ∩ (N + RyS).
(2 ⇒ 1). Let r1, r2 ∈ R and a ∈ M where r1r2aS ⊆ N . Since S2 = S, then
r1r2aSS ⊆ N . If r1aS * N , we will show that r2aS ⊆ N . From r1r2aSS ⊆ N , we
obtain r1 ∈ (N :R r2aS) \ (N :R a). Consequently, (N :R r2aS) 6= (N :R a). Put
x = r2aS and y = a, then by our assumption we get N = (N+Rr2aS

2)∩(N+RaS).
Since r2aS ⊆ Rr2aS

2 ⊆ N + Rr2aS and r2aS ⊆ RaS ⊆ N + RaS, we obtain
r2aS ⊆ N . �

Before we present the next properties, we recall the definition of an irreducible
(R,S)-submodule as follow.

Definition 3.6. An (R,S)-submodule N of M is called irreducibe if for each (R,S)-
submodule N1 and N2 of M such that N = N1 ∩ N2 implies either N = N1 or
N = N2.

Proposition 3.7. Let M be an (R,S)-module with S2 = S and a ∈ RaS for all
a ∈M , N be a left weakly jointly prime (R,S)-submodule of M , and x, y ∈M .

(1) If rxs ∈ N where r ∈ R, s ∈ S, then N = (N + RxS) ∩ (N + RryS).
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(2) If N is an irreducible (R,S)-submodule, then N is a jointly prime (R,S)-
submodule of M .

Proof.

(1) If rys ∈ N , then clearly that N = (N + RxS) ∩ (N + RrysS). Since
S2 = S, then N = (N + RxS) ∩ (N + RryS). Moreover, if rys 6∈ N , then
(N :R x) 6= (N :R y). By Proposition 3.5, then N = (N+RxS)∩(N+RyS),
so we have

N ⊆ (N + RxS) ∩ (N + RryS) ⊆ (N + RxS) ∩ (N + RyS) = N.

Thus, N = (N + RxS) ∩ (N + RryS).
(2) Let any r ∈ R, s ∈ S, and x ∈M such that rxs ∈ N . By part (a), for each

y ∈M we have N = (N +RxS)∩ (N +RryS). Since N is irreducible then
N = N + RxS or N = N + RryS = N + NRrrysS. We have x ∈ N or
rys ∈ N , so x ∈ N or rMs ⊆ N . Thus, by Proposition 2.1 we have N is a
jointly prime (R,S)-submodule of M . �

Let M be an (R,S)-module and N be an (R,S)-submodule of M . For every
a ∈ R we consider (N :M a) to be:

(N :M a) = {m ∈M | amS ⊆ N}.
We can show that (N :M a) is an (R,S)-submodule of M containing N .

Proposition 3.8. Let M be an (R,S)-module with S2 = S and N be a left weakly
jointly prime (R,S)-submodule of M . Then, for every a, b ∈ R satisfy

(N :M ab) = (N :M a) ∪ (N :M b).

Proof. Let any x ∈ (N :M ab), then abxS ⊆ N . Since N is a left weakly jointly
prime (R,S)-submodule, then axS ⊆ N or bxS ⊆ N . So, we get x ∈ (N :M a)
or x ∈ (N :M b), then (N :M ab) ⊆ (N :M a) ∪ (N :M b). Next, let any y ∈
(N :M a) ∪ (N :M b). Then, ayS ⊆ N or byS ⊆ N . Since S2 = S and N is an
(R,S)-submodule of M , then we get

abyS = a(byS)S ⊆ aNS ⊆ N.

Hence, we obtain y ∈ (N :M ab). Thus, (N :M a) ∪ (N :M b) ⊆ (N :M ab).
Therefore, it has shown that (N :M ab) = (N :M a) ∪ (N :M b). �

The following lemma gives us a property about the necessary and sufficient
conditions of left weakly jointly prime (R,S)-submodules.

Lemma 3.9. Let M be an (R,S)-module with S2 = S and N be a proper (R,S)-
submodule of M . Then, N is a left weakly jointly prime (R,S)-submodule if and
only if for each a, b ∈ R satisfy (N :M ab) = (N :M a) or (N :M ab) = (N :M b).

Proof. (⇒). Let N is a left weakly jointly prime (R,S)-submodule of M . Since
(N :M ab) = (N :M a) ∪ (N :M b) is an (R,S)-submodule of M , then (N :M a) ⊆
(N :M b) or (N :M b) ⊆ (N :M a). Therefore, we have (N :M ab) = (N :M a) or
(N :M ab) = (N :M b).
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(⇐). Let any a, b ∈ R and m ∈ M with abmS ⊆ N . So we get m ∈ (N :M ab).
Based on the hypothesis, (N :M ab) = (N :M a) or (N :M ab) = (N :M b). So
m ∈ (N :M a) or m ∈ (N :M b). Consequently, amS ⊆ N or bmS ⊆ N . Hence, N
is a left weakly jointly prime (R,S)-submodule of M . �

A weakly jointly prime (R,S)-submodule P of M is called minimal if it is
minimal in the class of weakly jointly prime (R,S)-submodules of M . In the next
proposition, we present that any left weakly jointly prime (R,S)-submodule con-
tains a minimal left weakly jointly prime (R,S)-submodule.

Proposition 3.10. Let M be an (R,S)-module with a ∈ RaS for all a ∈M . Any
left weakly jointly prime (R,S)-submodule P of M contains a minimal left weakly
jointly prime (R,S)-submodule.

Proof. Let any weakly jointly prime (R,S)-submodule P of M and let J be the set
of all weakly jointly prime (R,S)-submodules of M that contained in P . Clearly,
J 6= ∅ since P ∈ J. By using Zorn’s Lemma, we will show that J contains a minimal
element. Equivalently, we show that every nonempty chain in J has a lower bound
in J. Let any nonempty chain G ⊆ J. We can construct the set Q =

⋂
K∈G

K.

Then, clearly Q is an (R,S)-submodule of M and Q ⊆ P . We claim that Q is
a weakly jointly prime (R,S)-submodule of M . Let any ideal I, J of R and an
(R,S)-submodule N of M such that IJNS ⊆ Q but JNS * Q. We will show
that INS ⊆ Q. Let any element n ∈ JNS \Q. Then, there exist K ′ ∈ G such
that n 6∈ K ′. Since K ′ is a left weakly jointly prime (R,S)-submodule of M , then
from IJNS ⊆ Q ⊆ K ′ implies INS ⊆ K ′. Moreover, let any L ∈ G. Since G is a
chain of J, then K ′ ⊆ L or L ⊆ K ′. If K ′ ⊆ L, then we obtain INS ⊆ K ′ ⊆ L. If
L ⊆ K ′, then we get n 6∈ L. Since L is a left weakly jointly prime (R,S)-submodule
of M , then from IJNS ⊆ Q ⊆ L implies INS ⊆ L. Thus, we obtain INS ⊆ L
for any L ∈ G and so INS ⊆ Q. Hence, proved that Q is a left weakly jointly
prime (R,S)-submodule of M . Since Q ⊆ P , then Q ∈ J and Q is a lower bound
of G. Thus, it’s proved that every nonempty chain of J has a lower bound in J.
Based on Zorn’s Lemma, there exist a left weakly jointly prime (R,S)-submodule
P ∗ ∈ J that minimal among the left weakly jointly prime (R,S)-submodules in J.
Thus, it’s proved that any left weakly jointly prime (R,S)-submodules P contain
minimal left weakly jointly prime (R,S)-submodule P ∗ of M . �

From Khumprapussorn et al.[7], we know that an (R,S)-module M is called
left multiplication (R,S)-module provided that for each (R,S)-submodule N of M
there exists an ideal I of R such that N = IMS. We have the characterization of
jointly prime (R,S)-submodule of left multiplication (R,S)-modules as follow.

Theorem 3.11. Let M be a left multiplication (R,S)-module with S2 = S. Then,
P is a jointly prime (R,S)-submodule of M if and only if (P :R M) is a prime
ideal of R.
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In the following proposition, we present that every left weakly jointly prime
(R,S)-submodules is equal to jointly prime (R,S)-submodules in left multiplication
(R,S)-modules.

Proposition 3.12. Let M be a left multiplication (R,S)-module with S2 = S and
a ∈ RaS for all a ∈M . An (R,S)-submodule N of M is jointly prime if and only
if N is left weakly jointly prime (R,S)-submodules of M .

Proof. (⇒). it’s obvious.
(⇐). Let N is a left weakly jointly prime (R,S)-submodule of M . Then (N :R M)
is a prime ideal of R. Since M is a left multiplication (R,S)-module and ring S
satisfy S2 = S, then based on Theorem 3.11 we have N is a jointly prime (R,S)-
submodule of M . �

4. CONCLUDING REMARKS

Further work on the properties of left weakly jointly prime (R,S)-submodules
can be carried out. For example, the investigation of properties of left weakly jointly
prime radicals of an (R,S)-module.
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